Xin Zhou, Na Guo, Fangyan Zhang, Kaili Zhuo, Guilan Zhu
{"title":"以结冷胶-乳清分离蛋白纳米复合物为基础提高acn的稳定性和生物利用度。","authors":"Xin Zhou, Na Guo, Fangyan Zhang, Kaili Zhuo, Guilan Zhu","doi":"10.1016/j.fochx.2024.102050","DOIUrl":null,"url":null,"abstract":"<p><p>Blueberry anthocyanins (ACNs) have been widely applied in the food industry and medicine due to their numerous beneficial properties. However, the stability of ACNs is extremely poor. This study aimed to develop a delivery system for ACNs using nanocomplexes prepared from gellan gum (GG) and whey protein isolate (WPI) via Maillard reaction. The effects of the GG-WPI nanocomplexes on the stability, antioxidant capacity, and bioavailability of ACNs were investigated. FTIR, fluorescence spectroscopy, and UV-vis absorption spectroscopy revealed covalent bonding between the GG and WPI in the nanocomplexes. The nanocomplex demonstrated a good loading efficiency for ACNs (60.34 %), with a particle size of 368.42 nm. It also showed better stability and bioaccessibility than free ACNs, and their DPPH radical scavenging capacity reached a maximum of 63.11 %. Our research is significant for developing novel multifunctional foods and constructing high-performance food delivery systems.</p>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"24 ","pages":"102050"},"PeriodicalIF":6.5000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656087/pdf/","citationCount":"0","resultStr":"{\"title\":\"Improving stability and bioavailability of ACNs based on Gellan gum-whey protein isolate nanocomplexes.\",\"authors\":\"Xin Zhou, Na Guo, Fangyan Zhang, Kaili Zhuo, Guilan Zhu\",\"doi\":\"10.1016/j.fochx.2024.102050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Blueberry anthocyanins (ACNs) have been widely applied in the food industry and medicine due to their numerous beneficial properties. However, the stability of ACNs is extremely poor. This study aimed to develop a delivery system for ACNs using nanocomplexes prepared from gellan gum (GG) and whey protein isolate (WPI) via Maillard reaction. The effects of the GG-WPI nanocomplexes on the stability, antioxidant capacity, and bioavailability of ACNs were investigated. FTIR, fluorescence spectroscopy, and UV-vis absorption spectroscopy revealed covalent bonding between the GG and WPI in the nanocomplexes. The nanocomplex demonstrated a good loading efficiency for ACNs (60.34 %), with a particle size of 368.42 nm. It also showed better stability and bioaccessibility than free ACNs, and their DPPH radical scavenging capacity reached a maximum of 63.11 %. Our research is significant for developing novel multifunctional foods and constructing high-performance food delivery systems.</p>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"24 \",\"pages\":\"102050\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656087/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.fochx.2024.102050\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/30 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.102050","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/30 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Improving stability and bioavailability of ACNs based on Gellan gum-whey protein isolate nanocomplexes.
Blueberry anthocyanins (ACNs) have been widely applied in the food industry and medicine due to their numerous beneficial properties. However, the stability of ACNs is extremely poor. This study aimed to develop a delivery system for ACNs using nanocomplexes prepared from gellan gum (GG) and whey protein isolate (WPI) via Maillard reaction. The effects of the GG-WPI nanocomplexes on the stability, antioxidant capacity, and bioavailability of ACNs were investigated. FTIR, fluorescence spectroscopy, and UV-vis absorption spectroscopy revealed covalent bonding between the GG and WPI in the nanocomplexes. The nanocomplex demonstrated a good loading efficiency for ACNs (60.34 %), with a particle size of 368.42 nm. It also showed better stability and bioaccessibility than free ACNs, and their DPPH radical scavenging capacity reached a maximum of 63.11 %. Our research is significant for developing novel multifunctional foods and constructing high-performance food delivery systems.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.