Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson
{"title":"从头算非晶体结构数据库:增强机器学习解码扩散性的能力","authors":"Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson","doi":"10.1038/s41524-024-01469-2","DOIUrl":null,"url":null,"abstract":"<p>Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"70 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity\",\"authors\":\"Hui Zheng, Eric Sivonxay, Rasmus Christensen, Max Gallant, Ziyao Luo, Matthew McDermott, Patrick Huck, Morten M. Smedskjær, Kristin A. Persson\",\"doi\":\"10.1038/s41524-024-01469-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01469-2\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01469-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The ab initio non-crystalline structure database: empowering machine learning to decode diffusivity
Non-crystalline materials exhibit unique properties that make them suitable for various applications in science and technology, ranging from optical and electronic devices and solid-state batteries to protective coatings. However, data-driven exploration and design of non-crystalline materials is hampered by the absence of a comprehensive database covering a broad chemical space. In this work, we present the largest computed non-crystalline structure database to date, generated from systematic and accurate ab initio molecular dynamics (AIMD) calculations. We also show how the database can be used in simple machine-learning models to connect properties to composition and structure, here specifically targeting ionic conductivity. These models predict the Li-ion diffusivity with speed and accuracy, offering a cost-effective alternative to expensive density functional theory (DFT) calculations. Furthermore, the process of computational quenching non-crystalline structures provides a unique sampling of out-of-equilibrium structures, energies, and force landscape, and we anticipate that the corresponding trajectories will inform future work in universal machine learning potentials, impacting design beyond that of non-crystalline materials. In addition, combining diffusion trajectories from our dataset with models that predict liquidus viscosity and melting temperature could be utilized to develop models for predicting glass-forming ability.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.