硅相容CeO2/HfO2人工超晶格中杂化反常铁电性

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Pawan Kumar, Jun Hee Lee
{"title":"硅相容CeO2/HfO2人工超晶格中杂化反常铁电性","authors":"Pawan Kumar, Jun Hee Lee","doi":"10.1038/s41524-024-01487-0","DOIUrl":null,"url":null,"abstract":"<p>Hybrid improper ferroelectrics (HIFs), characterized by ferroelectric polarization arising from the rotation of two symmetry inequivalent antiferrodistortive modes, exhibit exotic properties such as T-independent dielectric constants and robustness against depolarizing field. Here, using first-principles simulations, we report a new <span>\\(P{2}_{1}\\)</span> phase in a Si-compatible CeO<sub>2</sub>/HfO<sub>2</sub> superlattice that exhibits remarkably robust hybrid improper ferroelectricity, induced by the in-plane oxygen rotations of two antiferrodistortive distortion modes. These non-polar distortions are coupled with a polar distortion through a trilinear coupling in the superlattice, stabilizing ferroelectricity as the competing ground state with the assistance of epitaxial strain. The estimated out-of-plane polarization (<span>\\(P=30.3\\,\\mu C/c{m}^{2}\\)</span>) is switchable with a remarkably small energy barrier of 8.5 meV/atom and relatively smaller coercive field relative to bulk HfO<sub>2</sub>, expected to reduce the operational voltage of ferroelectric devices. Our discovery may offer unexpected opportunities for innovating high-performance, low-voltage devices, and promising advancements in next-generation CMOS compatible oxide-based electronics.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"20 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid improper ferroelectricity in a Si-compatible CeO2/HfO2 artificial superlattice\",\"authors\":\"Pawan Kumar, Jun Hee Lee\",\"doi\":\"10.1038/s41524-024-01487-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hybrid improper ferroelectrics (HIFs), characterized by ferroelectric polarization arising from the rotation of two symmetry inequivalent antiferrodistortive modes, exhibit exotic properties such as T-independent dielectric constants and robustness against depolarizing field. Here, using first-principles simulations, we report a new <span>\\\\(P{2}_{1}\\\\)</span> phase in a Si-compatible CeO<sub>2</sub>/HfO<sub>2</sub> superlattice that exhibits remarkably robust hybrid improper ferroelectricity, induced by the in-plane oxygen rotations of two antiferrodistortive distortion modes. These non-polar distortions are coupled with a polar distortion through a trilinear coupling in the superlattice, stabilizing ferroelectricity as the competing ground state with the assistance of epitaxial strain. The estimated out-of-plane polarization (<span>\\\\(P=30.3\\\\,\\\\mu C/c{m}^{2}\\\\)</span>) is switchable with a remarkably small energy barrier of 8.5 meV/atom and relatively smaller coercive field relative to bulk HfO<sub>2</sub>, expected to reduce the operational voltage of ferroelectric devices. Our discovery may offer unexpected opportunities for innovating high-performance, low-voltage devices, and promising advancements in next-generation CMOS compatible oxide-based electronics.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01487-0\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01487-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

杂化不当铁电体(hif)的特征是由两个对称不等效反铁扭曲模式的旋转引起的铁电极化,具有t无关介电常数和对去极化场的鲁棒性等奇异特性。在这里,使用第一原理模拟,我们报告了si兼容CeO2/HfO2超晶格中的一个新的\(P{2}_{1}\)相,该相表现出非常强大的杂化不正当铁电性,这是由两种反铁扭曲畸变模式的平面内氧旋转引起的。这些非极性畸变通过超晶格中的三线性耦合与极性畸变耦合,在外延应变的帮助下稳定铁电性作为竞争基态。估计的面外极化(\(P=30.3\,\mu C/c{m}^{2}\))是可切换的,具有8.5 meV/原子的非常小的能量势垒和相对于块体HfO2相对较小的矫顽力场,有望降低铁电器件的工作电压。我们的发现可能会为创新高性能,低压器件提供意想不到的机会,并在下一代CMOS兼容的氧化物基电子产品中取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hybrid improper ferroelectricity in a Si-compatible CeO2/HfO2 artificial superlattice

Hybrid improper ferroelectricity in a Si-compatible CeO2/HfO2 artificial superlattice

Hybrid improper ferroelectrics (HIFs), characterized by ferroelectric polarization arising from the rotation of two symmetry inequivalent antiferrodistortive modes, exhibit exotic properties such as T-independent dielectric constants and robustness against depolarizing field. Here, using first-principles simulations, we report a new \(P{2}_{1}\) phase in a Si-compatible CeO2/HfO2 superlattice that exhibits remarkably robust hybrid improper ferroelectricity, induced by the in-plane oxygen rotations of two antiferrodistortive distortion modes. These non-polar distortions are coupled with a polar distortion through a trilinear coupling in the superlattice, stabilizing ferroelectricity as the competing ground state with the assistance of epitaxial strain. The estimated out-of-plane polarization (\(P=30.3\,\mu C/c{m}^{2}\)) is switchable with a remarkably small energy barrier of 8.5 meV/atom and relatively smaller coercive field relative to bulk HfO2, expected to reduce the operational voltage of ferroelectric devices. Our discovery may offer unexpected opportunities for innovating high-performance, low-voltage devices, and promising advancements in next-generation CMOS compatible oxide-based electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信