化学蛋白质组学分析显示绿原酸是拟南芥脱氢抗坏血酸还原酶1的共价抑制剂

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Jingyuan Xu, Lijun Chen, Shanshan Wang, Wen Zhang, Jianjia Liang, Lu Ran, Zhangshuang Deng, Yiqing Zhou
{"title":"化学蛋白质组学分析显示绿原酸是拟南芥脱氢抗坏血酸还原酶1的共价抑制剂","authors":"Jingyuan Xu, Lijun Chen, Shanshan Wang, Wen Zhang, Jianjia Liang, Lu Ran, Zhangshuang Deng, Yiqing Zhou","doi":"10.1021/acs.jafc.4c07955","DOIUrl":null,"url":null,"abstract":"Chlorogenic acid (CA) is an abundant plant secondary metabolite with promising allelopathic effects on weed growth. However, the molecular targets and mechanism of action of CA in plants remain elusive. Here, we report the employment of a clickable photoaffinity probe in identifying the protein targets of CA in <i>Arabidopsis</i> seedling proteomes. CA specifically binds <i>Arabidopsis</i> dehydroascorbate reductase 1 (<i>At</i>DHAR1), an enzyme responsible for ascorbate regeneration in plants, by covalent alkylating Cys20 within the catalytic center, thereby inhibiting its activity. In vivo application of CA reduced the pool size and redox state of ascorbate, leading to H<sub>2</sub>O<sub>2</sub> accumulation in <i>Arabidopsis</i> seedlings. In agreement with these results, CA significantly induced the upregulation of antioxidant enzymes and downregulation of proteins involved in water transport and photosynthesis, as evidenced by quantitative proteomics. Taken together, this study revealed DHAR1 as a functional target underlying CA’s allelopathic activity in plants, which opens new opportunities for the development of novel herbicides from naturally existing resources.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"70 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemoproteomic Profiling Reveals Chlorogenic Acid as a Covalent Inhibitor of Arabidopsis Dehydroascorbate Reductase 1\",\"authors\":\"Jingyuan Xu, Lijun Chen, Shanshan Wang, Wen Zhang, Jianjia Liang, Lu Ran, Zhangshuang Deng, Yiqing Zhou\",\"doi\":\"10.1021/acs.jafc.4c07955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chlorogenic acid (CA) is an abundant plant secondary metabolite with promising allelopathic effects on weed growth. However, the molecular targets and mechanism of action of CA in plants remain elusive. Here, we report the employment of a clickable photoaffinity probe in identifying the protein targets of CA in <i>Arabidopsis</i> seedling proteomes. CA specifically binds <i>Arabidopsis</i> dehydroascorbate reductase 1 (<i>At</i>DHAR1), an enzyme responsible for ascorbate regeneration in plants, by covalent alkylating Cys20 within the catalytic center, thereby inhibiting its activity. In vivo application of CA reduced the pool size and redox state of ascorbate, leading to H<sub>2</sub>O<sub>2</sub> accumulation in <i>Arabidopsis</i> seedlings. In agreement with these results, CA significantly induced the upregulation of antioxidant enzymes and downregulation of proteins involved in water transport and photosynthesis, as evidenced by quantitative proteomics. Taken together, this study revealed DHAR1 as a functional target underlying CA’s allelopathic activity in plants, which opens new opportunities for the development of novel herbicides from naturally existing resources.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c07955\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07955","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

绿原酸是一种丰富的植物次生代谢物,对杂草生长具有化感作用。然而,CA在植物中的分子靶点和作用机制尚不清楚。在这里,我们报道了一种可点击的光亲和探针在拟南芥幼苗蛋白质组中鉴定CA蛋白靶点的应用。CA特异性结合拟南芥脱氢抗坏血酸还原酶1 (AtDHAR1),在催化中心将Cys20共价烷基化,从而抑制其活性。CA在体内的应用减少了抗坏血酸的池大小和氧化还原状态,导致H2O2在拟南芥幼苗中积累。定量蛋白质组学结果表明,CA显著诱导抗氧化酶的上调和参与水转运和光合作用的蛋白的下调。综上所述,该研究揭示了DHAR1是CA化感作用的功能靶点,为从自然存在的资源中开发新型除草剂开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemoproteomic Profiling Reveals Chlorogenic Acid as a Covalent Inhibitor of Arabidopsis Dehydroascorbate Reductase 1

Chemoproteomic Profiling Reveals Chlorogenic Acid as a Covalent Inhibitor of Arabidopsis Dehydroascorbate Reductase 1
Chlorogenic acid (CA) is an abundant plant secondary metabolite with promising allelopathic effects on weed growth. However, the molecular targets and mechanism of action of CA in plants remain elusive. Here, we report the employment of a clickable photoaffinity probe in identifying the protein targets of CA in Arabidopsis seedling proteomes. CA specifically binds Arabidopsis dehydroascorbate reductase 1 (AtDHAR1), an enzyme responsible for ascorbate regeneration in plants, by covalent alkylating Cys20 within the catalytic center, thereby inhibiting its activity. In vivo application of CA reduced the pool size and redox state of ascorbate, leading to H2O2 accumulation in Arabidopsis seedlings. In agreement with these results, CA significantly induced the upregulation of antioxidant enzymes and downregulation of proteins involved in water transport and photosynthesis, as evidenced by quantitative proteomics. Taken together, this study revealed DHAR1 as a functional target underlying CA’s allelopathic activity in plants, which opens new opportunities for the development of novel herbicides from naturally existing resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信