Kaifang Guan , Xiaolin Liu , Weihong Lu , Yuhao Mao , Yirong Mao , Ying Ma , Rongchu Wang , Qiming Li
{"title":"生物活性乳源营养素MFG-E8通过激活MAPK/ERK信号通路改善衰老大鼠线粒体损伤引起的骨骼肌萎缩","authors":"Kaifang Guan , Xiaolin Liu , Weihong Lu , Yuhao Mao , Yirong Mao , Ying Ma , Rongchu Wang , Qiming Li","doi":"10.3168/jds.2024-25532","DOIUrl":null,"url":null,"abstract":"<div><div>Sarcopenia is the age-related loss of muscle and fiber number and decreased regenerative capacity with increased abundance of reactive oxygen species levels and electron transport chain abnormalities. The aim of this study was to investigate the antisarcopenia effect of MFG-E8 in alleviating skeletal muscle dysfunction induced by D-galactose, and reveal the mechanism promoting myoblast cell proliferation and mediating the cell cycle. This in vivo experiment showed that MFG-E8 can improve the antioxidant status and increase soleus muscle mass (35.61%) and fiber diameter (39.72%) in the aging rats. The western blot assay preliminarily proved that increased ERK phosphorylation determines the repairment of injured skeletal muscle, but not JNK and p38. In vitro experiments further verified that MFG-E8 can increase the number of mitochondria, cell vitality, cell density, and reduce apoptosis rate. Flow cytometry and quantitative real-time PCR proved that MFG-E8 promoted cell proliferation by upregulating mRNA expression of cyclin D1, cyclin E1, CDK, and downregulating mRNA expression of p21 and p27, thereby increasing the S and G<sub>2</sub>/M phase and decreasing the G<sub>0</sub>/G<sub>1</sub> phase. Molecular level further proved that MFG-E8 mediated cell cycle and promoted cell proliferation by activating the MAPK/ERK signaling pathway.</div></div>","PeriodicalId":354,"journal":{"name":"Journal of Dairy Science","volume":"108 2","pages":"Pages 1182-1197"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioactive milk-derived nutrient MFG-E8 ameliorates skeletal muscle atrophy induced by mitochondria damage in aging rats via activating the MAPK/ERK signaling pathway\",\"authors\":\"Kaifang Guan , Xiaolin Liu , Weihong Lu , Yuhao Mao , Yirong Mao , Ying Ma , Rongchu Wang , Qiming Li\",\"doi\":\"10.3168/jds.2024-25532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sarcopenia is the age-related loss of muscle and fiber number and decreased regenerative capacity with increased abundance of reactive oxygen species levels and electron transport chain abnormalities. The aim of this study was to investigate the antisarcopenia effect of MFG-E8 in alleviating skeletal muscle dysfunction induced by D-galactose, and reveal the mechanism promoting myoblast cell proliferation and mediating the cell cycle. This in vivo experiment showed that MFG-E8 can improve the antioxidant status and increase soleus muscle mass (35.61%) and fiber diameter (39.72%) in the aging rats. The western blot assay preliminarily proved that increased ERK phosphorylation determines the repairment of injured skeletal muscle, but not JNK and p38. In vitro experiments further verified that MFG-E8 can increase the number of mitochondria, cell vitality, cell density, and reduce apoptosis rate. Flow cytometry and quantitative real-time PCR proved that MFG-E8 promoted cell proliferation by upregulating mRNA expression of cyclin D1, cyclin E1, CDK, and downregulating mRNA expression of p21 and p27, thereby increasing the S and G<sub>2</sub>/M phase and decreasing the G<sub>0</sub>/G<sub>1</sub> phase. Molecular level further proved that MFG-E8 mediated cell cycle and promoted cell proliferation by activating the MAPK/ERK signaling pathway.</div></div>\",\"PeriodicalId\":354,\"journal\":{\"name\":\"Journal of Dairy Science\",\"volume\":\"108 2\",\"pages\":\"Pages 1182-1197\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dairy Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022030224012414\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dairy Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022030224012414","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Bioactive milk-derived nutrient MFG-E8 ameliorates skeletal muscle atrophy induced by mitochondria damage in aging rats via activating the MAPK/ERK signaling pathway
Sarcopenia is the age-related loss of muscle and fiber number and decreased regenerative capacity with increased abundance of reactive oxygen species levels and electron transport chain abnormalities. The aim of this study was to investigate the antisarcopenia effect of MFG-E8 in alleviating skeletal muscle dysfunction induced by D-galactose, and reveal the mechanism promoting myoblast cell proliferation and mediating the cell cycle. This in vivo experiment showed that MFG-E8 can improve the antioxidant status and increase soleus muscle mass (35.61%) and fiber diameter (39.72%) in the aging rats. The western blot assay preliminarily proved that increased ERK phosphorylation determines the repairment of injured skeletal muscle, but not JNK and p38. In vitro experiments further verified that MFG-E8 can increase the number of mitochondria, cell vitality, cell density, and reduce apoptosis rate. Flow cytometry and quantitative real-time PCR proved that MFG-E8 promoted cell proliferation by upregulating mRNA expression of cyclin D1, cyclin E1, CDK, and downregulating mRNA expression of p21 and p27, thereby increasing the S and G2/M phase and decreasing the G0/G1 phase. Molecular level further proved that MFG-E8 mediated cell cycle and promoted cell proliferation by activating the MAPK/ERK signaling pathway.
期刊介绍:
The official journal of the American Dairy Science Association®, Journal of Dairy Science® (JDS) is the leading peer-reviewed general dairy research journal in the world. JDS readers represent education, industry, and government agencies in more than 70 countries with interests in biochemistry, breeding, economics, engineering, environment, food science, genetics, microbiology, nutrition, pathology, physiology, processing, public health, quality assurance, and sanitation.