Indukuru Ramesh Reddy, Chang-Jong Kang, Sooran Kim, Bongjae Kim
{"title":"探索过氧化物过渡金属氧化物中非局部库仑相互作用的作用","authors":"Indukuru Ramesh Reddy, Chang-Jong Kang, Sooran Kim, Bongjae Kim","doi":"10.1038/s41524-024-01454-9","DOIUrl":null,"url":null,"abstract":"<p>Employing the density functional theory incorporating on-site and inter-site Coulomb interactions (DFT + <i>U</i> + <i>V</i>), we have investigated the role of the nonlocal interactions on the electronic structures of the transition metal oxide perovskites. Using constrained random phase approximation calculations, we derived screened Coulomb interaction parameters and revealed a competition between localization and screening effects, which results in nonmonotonic behavior with <i>d</i>-orbital occupation. We highlight the significant role and nonlocality of inter-site Coulomb interactions, <i>V</i>, comparable in magnitude to the local interaction, <i>U</i>. Our DFT + <i>U</i> + <i>V</i> results exemplarily show the representative band renormalization, and deviations from ideal extended Hubbard models due to increased hybridization between transition metal <i>d</i> and oxygen <i>p</i> orbitals as occupation increases. We further demonstrate that the inclusion of the inter-site <i>V</i> is essential for accurately reproducing the experimental magnetic order in transition metal oxides.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"31 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the role of nonlocal Coulomb interactions in perovskite transition metal oxides\",\"authors\":\"Indukuru Ramesh Reddy, Chang-Jong Kang, Sooran Kim, Bongjae Kim\",\"doi\":\"10.1038/s41524-024-01454-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Employing the density functional theory incorporating on-site and inter-site Coulomb interactions (DFT + <i>U</i> + <i>V</i>), we have investigated the role of the nonlocal interactions on the electronic structures of the transition metal oxide perovskites. Using constrained random phase approximation calculations, we derived screened Coulomb interaction parameters and revealed a competition between localization and screening effects, which results in nonmonotonic behavior with <i>d</i>-orbital occupation. We highlight the significant role and nonlocality of inter-site Coulomb interactions, <i>V</i>, comparable in magnitude to the local interaction, <i>U</i>. Our DFT + <i>U</i> + <i>V</i> results exemplarily show the representative band renormalization, and deviations from ideal extended Hubbard models due to increased hybridization between transition metal <i>d</i> and oxygen <i>p</i> orbitals as occupation increases. We further demonstrate that the inclusion of the inter-site <i>V</i> is essential for accurately reproducing the experimental magnetic order in transition metal oxides.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01454-9\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01454-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文采用包含场间和场间库仑相互作用(DFT + U + V)的密度泛函理论,研究了非局部相互作用对过渡金属氧化物钙钛矿电子结构的影响。利用约束随机相位近似计算,我们推导出筛选库仑相互作用参数,并揭示了局域化和筛选效应之间的竞争,导致了d轨道占用时的非单调行为。我们强调了位置间库仑相互作用V的重要作用和非局部性,其量级与局部相互作用U相当。我们的DFT + U + V结果举例显示了代表性的带重正化,以及与理想扩展Hubbard模型的偏差,这是由于过渡金属d轨道和氧p轨道之间的杂化随着占领的增加而增加。我们进一步证明,在过渡金属氧化物中,包含位间V对于准确再现实验磁序是必不可少的。
Exploring the role of nonlocal Coulomb interactions in perovskite transition metal oxides
Employing the density functional theory incorporating on-site and inter-site Coulomb interactions (DFT + U + V), we have investigated the role of the nonlocal interactions on the electronic structures of the transition metal oxide perovskites. Using constrained random phase approximation calculations, we derived screened Coulomb interaction parameters and revealed a competition between localization and screening effects, which results in nonmonotonic behavior with d-orbital occupation. We highlight the significant role and nonlocality of inter-site Coulomb interactions, V, comparable in magnitude to the local interaction, U. Our DFT + U + V results exemplarily show the representative band renormalization, and deviations from ideal extended Hubbard models due to increased hybridization between transition metal d and oxygen p orbitals as occupation increases. We further demonstrate that the inclusion of the inter-site V is essential for accurately reproducing the experimental magnetic order in transition metal oxides.
期刊介绍:
npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings.
Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.