有限视点图像的正则化广义神经辐射场

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Wei Sun, Ruijia Cui, Qianzhou Wang, Xianguang Kong, Yanning Zhang
{"title":"有限视点图像的正则化广义神经辐射场","authors":"Wei Sun, Ruijia Cui, Qianzhou Wang, Xianguang Kong, Yanning Zhang","doi":"10.1007/s40747-024-01696-6","DOIUrl":null,"url":null,"abstract":"<p>We present a novel learning model with attention and prior guidance for view synthesis. In contrast to previous works that focus on optimizing for specific scenes with densely captured views, our model explores a generic deep neural framework to reconstruct radiance fields from a limited number of input views. To address challenges arising from under-constrained conditions, our approach employs cost volumes for geometry-aware scene reasoning, and integrates relevant knowledge from the ray-cast space and the surrounding-view space using an attention model. Additionally, a denoising diffusion model learns a prior over scene color, facilitating regularization of the training process and enabling high-quality radiance field reconstruction. Experimental results on diverse benchmark datasets demonstrate that our approach can generalize across scenes and produce realistic view synthesis results using only three input images, surpassing the performance of previous state-of-the-art methods. Moreover, our reconstructed radiance field can be effectively optimized by fine-tuning the target scene to achieve higher quality results with reduced optimization time. The code will be released at https://github.com/dsdefv/nerf.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"48 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rugularizing generalizable neural radiance field with limited-view images\",\"authors\":\"Wei Sun, Ruijia Cui, Qianzhou Wang, Xianguang Kong, Yanning Zhang\",\"doi\":\"10.1007/s40747-024-01696-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a novel learning model with attention and prior guidance for view synthesis. In contrast to previous works that focus on optimizing for specific scenes with densely captured views, our model explores a generic deep neural framework to reconstruct radiance fields from a limited number of input views. To address challenges arising from under-constrained conditions, our approach employs cost volumes for geometry-aware scene reasoning, and integrates relevant knowledge from the ray-cast space and the surrounding-view space using an attention model. Additionally, a denoising diffusion model learns a prior over scene color, facilitating regularization of the training process and enabling high-quality radiance field reconstruction. Experimental results on diverse benchmark datasets demonstrate that our approach can generalize across scenes and produce realistic view synthesis results using only three input images, surpassing the performance of previous state-of-the-art methods. Moreover, our reconstructed radiance field can be effectively optimized by fine-tuning the target scene to achieve higher quality results with reduced optimization time. The code will be released at https://github.com/dsdefv/nerf.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01696-6\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01696-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们为视图合成提出了一种具有注意力和先验指导的新型学习模型。与以往专注于优化具有密集捕捉视图的特定场景的工作不同,我们的模型探索了一种通用的深度神经框架,从有限数量的输入视图中重建辐射场。为了应对受限条件下的挑战,我们的方法采用了成本卷进行几何感知场景推理,并利用注意力模型整合了光线投射空间和周围视图空间的相关知识。此外,去噪扩散模型还能学习场景颜色的先验值,从而促进训练过程的正则化,并实现高质量的辐射场重建。在不同基准数据集上的实验结果表明,我们的方法可以跨场景通用,只需三张输入图像就能生成逼真的视图合成结果,其性能超过了以往最先进的方法。此外,我们重建的辐射场可以通过微调目标场景进行有效优化,从而在缩短优化时间的同时获得更高质量的结果。代码将在 https://github.com/dsdefv/nerf 上发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rugularizing generalizable neural radiance field with limited-view images

We present a novel learning model with attention and prior guidance for view synthesis. In contrast to previous works that focus on optimizing for specific scenes with densely captured views, our model explores a generic deep neural framework to reconstruct radiance fields from a limited number of input views. To address challenges arising from under-constrained conditions, our approach employs cost volumes for geometry-aware scene reasoning, and integrates relevant knowledge from the ray-cast space and the surrounding-view space using an attention model. Additionally, a denoising diffusion model learns a prior over scene color, facilitating regularization of the training process and enabling high-quality radiance field reconstruction. Experimental results on diverse benchmark datasets demonstrate that our approach can generalize across scenes and produce realistic view synthesis results using only three input images, surpassing the performance of previous state-of-the-art methods. Moreover, our reconstructed radiance field can be effectively optimized by fine-tuning the target scene to achieve higher quality results with reduced optimization time. The code will be released at https://github.com/dsdefv/nerf.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信