{"title":"基于动态分解和超距离的多目标进化算法","authors":"Xujian Wang, Fenggan Zhang, Minli Yao","doi":"10.1007/s40747-024-01637-3","DOIUrl":null,"url":null,"abstract":"<p>Nowadays many algorithms have appeared to solve many-objective optimization problems (MaOPs), yet the balance between convergence and diversity is still an open issue. In this paper, we propose a dynamic decomposition and hyper-distance based many-objective evolutionary algorithm named DHEA. On one hand, to maximize the diversity of the population, we use dynamic decomposition to decompose the whole population into multiple clusters. Specifically, first find pivot solutions according to the distribution of the population through the max–min-angle strategy, and then, assign solutions into different clusters according to their distances to pivot solutions. On the other hand, to select solutions from each cluster with balanced convergence and diversity, we propose hyper-distance based angle penalized distance for fitness assignment. Specifically, first compute the distance of solutions to the hyperplane and to the pivot solution to measure convergence and diversity, respectively, and then select the solution with the smallest fitness value. Hyper-distance, as convergence-related component, alleviates the bias towards problems with concave PFs. Besides, to promote convergence, the concept of knee points is introduced to mating selection. Through comparison with nine algorithms on 27 test problems, DHEA is validated to be effective and competitive to deal with MaOPs with different types of Pareto fronts and stable on different numbers of objectives.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"30 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic decomposition and hyper-distance based many-objective evolutionary algorithm\",\"authors\":\"Xujian Wang, Fenggan Zhang, Minli Yao\",\"doi\":\"10.1007/s40747-024-01637-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays many algorithms have appeared to solve many-objective optimization problems (MaOPs), yet the balance between convergence and diversity is still an open issue. In this paper, we propose a dynamic decomposition and hyper-distance based many-objective evolutionary algorithm named DHEA. On one hand, to maximize the diversity of the population, we use dynamic decomposition to decompose the whole population into multiple clusters. Specifically, first find pivot solutions according to the distribution of the population through the max–min-angle strategy, and then, assign solutions into different clusters according to their distances to pivot solutions. On the other hand, to select solutions from each cluster with balanced convergence and diversity, we propose hyper-distance based angle penalized distance for fitness assignment. Specifically, first compute the distance of solutions to the hyperplane and to the pivot solution to measure convergence and diversity, respectively, and then select the solution with the smallest fitness value. Hyper-distance, as convergence-related component, alleviates the bias towards problems with concave PFs. Besides, to promote convergence, the concept of knee points is introduced to mating selection. Through comparison with nine algorithms on 27 test problems, DHEA is validated to be effective and competitive to deal with MaOPs with different types of Pareto fronts and stable on different numbers of objectives.</p>\",\"PeriodicalId\":10524,\"journal\":{\"name\":\"Complex & Intelligent Systems\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex & Intelligent Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40747-024-01637-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01637-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Dynamic decomposition and hyper-distance based many-objective evolutionary algorithm
Nowadays many algorithms have appeared to solve many-objective optimization problems (MaOPs), yet the balance between convergence and diversity is still an open issue. In this paper, we propose a dynamic decomposition and hyper-distance based many-objective evolutionary algorithm named DHEA. On one hand, to maximize the diversity of the population, we use dynamic decomposition to decompose the whole population into multiple clusters. Specifically, first find pivot solutions according to the distribution of the population through the max–min-angle strategy, and then, assign solutions into different clusters according to their distances to pivot solutions. On the other hand, to select solutions from each cluster with balanced convergence and diversity, we propose hyper-distance based angle penalized distance for fitness assignment. Specifically, first compute the distance of solutions to the hyperplane and to the pivot solution to measure convergence and diversity, respectively, and then select the solution with the smallest fitness value. Hyper-distance, as convergence-related component, alleviates the bias towards problems with concave PFs. Besides, to promote convergence, the concept of knee points is introduced to mating selection. Through comparison with nine algorithms on 27 test problems, DHEA is validated to be effective and competitive to deal with MaOPs with different types of Pareto fronts and stable on different numbers of objectives.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.