基于深度学习的相位条件红外光谱生成方法

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Gyoung S. Na*, 
{"title":"基于深度学习的相位条件红外光谱生成方法","authors":"Gyoung S. Na*,&nbsp;","doi":"10.1021/acs.analchem.4c0478610.1021/acs.analchem.4c04786","DOIUrl":null,"url":null,"abstract":"<p >Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 49","pages":"19659–19669 19659–19669"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Generating Phase-Conditioned Infrared Spectra\",\"authors\":\"Gyoung S. Na*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.4c0478610.1021/acs.analchem.4c04786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 49\",\"pages\":\"19659–19669 19659–19669\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04786\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

红外光谱是鉴别未知化合物的一种有效方法。为了加速红外光谱分析,化学科学研究了各种模拟分子红外光谱的计算和机器学习方法。然而,现有的计算和机器学习方法假设了所有分子都处于气相的刚性约束,即忽略了红外光谱的相依赖性。在本文中,我们提出了一种有效的相位感知机器学习方法,从二维分子结构中生成相位条件红外光谱。为此,我们设计了一种相位感知图神经网络,并将其与变压器解码器相结合。据我们所知,所提出的方法是第一个能够生成现实世界复杂分子的相位条件红外光谱的红外光谱发生器。该方法在包含10,288个独特分子的11,546个红外光谱的基准数据集上生成红外光谱的任务中优于最先进的方法。建议的方法的所有实现都可以在https://github.com/ngs00/PASGeN上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep Learning for Generating Phase-Conditioned Infrared Spectra

Deep Learning for Generating Phase-Conditioned Infrared Spectra

Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信