{"title":"基于深度学习的相位条件红外光谱生成方法","authors":"Gyoung S. Na*, ","doi":"10.1021/acs.analchem.4c0478610.1021/acs.analchem.4c04786","DOIUrl":null,"url":null,"abstract":"<p >Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"96 49","pages":"19659–19669 19659–19669"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Generating Phase-Conditioned Infrared Spectra\",\"authors\":\"Gyoung S. Na*, \",\"doi\":\"10.1021/acs.analchem.4c0478610.1021/acs.analchem.4c04786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"96 49\",\"pages\":\"19659–19669 19659–19669\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04786\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.4c04786","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Deep Learning for Generating Phase-Conditioned Infrared Spectra
Infrared (IR) spectroscopy is an efficient method for identifying unknown chemical compounds. To accelerate IR spectrum analysis, various calculation and machine learning methods for simulating IR spectra of molecules have been studied in chemical science. However, existing calculation and machine learning methods assumed a rigid constraint that all molecules are in the gas phase, i.e., they overlooked the phase dependency of the IR spectra. In this paper, we propose an efficient phase-aware machine learning method to generate phase-conditioned IR spectra from 2D molecular structures. To this end, we devised a phase-aware graph neural network and combined it with a transformer decoder. To the best of our knowledge, the proposed method is the first IR spectrum generator that can generate the phase-conditioned IR spectra of real-world complex molecules. The proposed method outperformed state-of-the-art methods in the tasks of generating IR spectra on a benchmark dataset containing experimentally measured 11,546 IR spectra of 10,288 unique molecules. All implementations of the proposed method are publicly available at https://github.com/ngs00/PASGeN.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.