{"title":"Th17/Treg平衡在黄芪多糖通过微生物-肠-脑轴抑制实验性自身免疫性脑脊髓炎的过程中受到调节。","authors":"Jinyun Ma, Xiaojun Liu, Yan Zhao, Qijin Lu, Guiqing Ding, Yuanhua Wang, Xiaodong Cheng","doi":"10.1016/j.brainresbull.2024.111171","DOIUrl":null,"url":null,"abstract":"<div><div>The Th17/Treg imbalance is an important cause of immune cell infiltration into the central nervous system (CNS) in multiple sclerosis (MS). The gut microbiota affects the Th17/Treg balance in the gut and in distal areas, such as the CNS, which further contributes to the onset and progression of MS. Our previous studies have shown that <em>Astragalus polysaccharide</em> (APS) has a role in alleviating the clinical symptoms and demyelination of experimental autoimmune encephalomyelitis (EAE) mice, a classic MS model. However, the mechanism of action is not fully understood. In this study, we found that APS suppressed inflammation and regulated the Th17/Treg balance in the CNS and peripheral blood of EAE mice. It was further shown that APS inhibited gut inflammation and reduced Th17 function. The experiment with an antibiotic cocktail interfering with the gut microbiota proved that APS alleviated EAE by regulating the gut microbiota. Through 16S rRNA sequencing, we showed that APS regulated gut microbiota diversity and composition in EAE mice. Then, we found that APS regulated metabolite composition in feces and plasma, thus altering gut and blood metabolic functions. Metabolites related to this pathway, including sphingosine 1 phosphate (S1P), prostaglandin E2 (PGE2), ADP, and ATP, were downregulated by APS. The levels of bile acid metabolites such as taurochenodeoxycholate-7-sulfate and N-palmitoyl aspartic acid were upregulated by APS. In summary, our study demonstrated that APS exerts a suppressive effect on EAE by regulating gut microbiota composition, affecting metabolite composition, and improving the Th17/Treg balance in the peripheral blood and CNS.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"220 ","pages":"Article 111171"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Th17/Treg balance is regulated during the suppression of experimental autoimmune encephalomyelitis treated by Astragalus polysaccharides via the microbiota-gut-brain axis\",\"authors\":\"Jinyun Ma, Xiaojun Liu, Yan Zhao, Qijin Lu, Guiqing Ding, Yuanhua Wang, Xiaodong Cheng\",\"doi\":\"10.1016/j.brainresbull.2024.111171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Th17/Treg imbalance is an important cause of immune cell infiltration into the central nervous system (CNS) in multiple sclerosis (MS). The gut microbiota affects the Th17/Treg balance in the gut and in distal areas, such as the CNS, which further contributes to the onset and progression of MS. Our previous studies have shown that <em>Astragalus polysaccharide</em> (APS) has a role in alleviating the clinical symptoms and demyelination of experimental autoimmune encephalomyelitis (EAE) mice, a classic MS model. However, the mechanism of action is not fully understood. In this study, we found that APS suppressed inflammation and regulated the Th17/Treg balance in the CNS and peripheral blood of EAE mice. It was further shown that APS inhibited gut inflammation and reduced Th17 function. The experiment with an antibiotic cocktail interfering with the gut microbiota proved that APS alleviated EAE by regulating the gut microbiota. Through 16S rRNA sequencing, we showed that APS regulated gut microbiota diversity and composition in EAE mice. Then, we found that APS regulated metabolite composition in feces and plasma, thus altering gut and blood metabolic functions. Metabolites related to this pathway, including sphingosine 1 phosphate (S1P), prostaglandin E2 (PGE2), ADP, and ATP, were downregulated by APS. The levels of bile acid metabolites such as taurochenodeoxycholate-7-sulfate and N-palmitoyl aspartic acid were upregulated by APS. In summary, our study demonstrated that APS exerts a suppressive effect on EAE by regulating gut microbiota composition, affecting metabolite composition, and improving the Th17/Treg balance in the peripheral blood and CNS.</div></div>\",\"PeriodicalId\":9302,\"journal\":{\"name\":\"Brain Research Bulletin\",\"volume\":\"220 \",\"pages\":\"Article 111171\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Research Bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0361923024003058\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923024003058","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Th17/Treg balance is regulated during the suppression of experimental autoimmune encephalomyelitis treated by Astragalus polysaccharides via the microbiota-gut-brain axis
The Th17/Treg imbalance is an important cause of immune cell infiltration into the central nervous system (CNS) in multiple sclerosis (MS). The gut microbiota affects the Th17/Treg balance in the gut and in distal areas, such as the CNS, which further contributes to the onset and progression of MS. Our previous studies have shown that Astragalus polysaccharide (APS) has a role in alleviating the clinical symptoms and demyelination of experimental autoimmune encephalomyelitis (EAE) mice, a classic MS model. However, the mechanism of action is not fully understood. In this study, we found that APS suppressed inflammation and regulated the Th17/Treg balance in the CNS and peripheral blood of EAE mice. It was further shown that APS inhibited gut inflammation and reduced Th17 function. The experiment with an antibiotic cocktail interfering with the gut microbiota proved that APS alleviated EAE by regulating the gut microbiota. Through 16S rRNA sequencing, we showed that APS regulated gut microbiota diversity and composition in EAE mice. Then, we found that APS regulated metabolite composition in feces and plasma, thus altering gut and blood metabolic functions. Metabolites related to this pathway, including sphingosine 1 phosphate (S1P), prostaglandin E2 (PGE2), ADP, and ATP, were downregulated by APS. The levels of bile acid metabolites such as taurochenodeoxycholate-7-sulfate and N-palmitoyl aspartic acid were upregulated by APS. In summary, our study demonstrated that APS exerts a suppressive effect on EAE by regulating gut microbiota composition, affecting metabolite composition, and improving the Th17/Treg balance in the peripheral blood and CNS.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.