嵌入纳米线共振隧道二极管的随机离散掺杂分析及其物理不可克隆功能的产生

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev
{"title":"嵌入纳米线共振隧道二极管的随机离散掺杂分析及其物理不可克隆功能的产生","authors":"Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev","doi":"10.1109/TNANO.2024.3504963","DOIUrl":null,"url":null,"abstract":"In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n and I\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n) variations. Such V\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n and I\n<inline-formula><tex-math>$_\\text{r}$</tex-math></inline-formula>\n variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"815-821"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Random Discrete Dopants Embedded Nanowire Resonant Tunnelling Diodes for Generation of Physically Unclonable Functions\",\"authors\":\"Pranav Acharya;Ali Rezaei;Amretashis Sengupta;Tapas Dutta;Naveen Kumar;Patryk Maciazek;Asen Asenov;Vihar Georgiev\",\"doi\":\"10.1109/TNANO.2024.3504963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V\\n<inline-formula><tex-math>$_\\\\text{r}$</tex-math></inline-formula>\\n and I\\n<inline-formula><tex-math>$_\\\\text{r}$</tex-math></inline-formula>\\n) variations. Such V\\n<inline-formula><tex-math>$_\\\\text{r}$</tex-math></inline-formula>\\n and I\\n<inline-formula><tex-math>$_\\\\text{r}$</tex-math></inline-formula>\\n variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"815-821\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10764758/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10764758/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们对双势垒III-V (GaAs/AlGaAs)纳米线谐振隧道二极管(rtd)中的电流进行了量子力学模拟。我们的模拟基于非平衡格林函数(NEGF)量子输运形式,在我们的内部模拟器NESS(纳米电子模拟软件)中实现。NEGF的形式使我们能够捕捉到量子力学效应的详细物理图像,如静电量子约束、电子穿过这种结构中的势垒的共振隧道和负微分电阻。此外,通过使用NESS功能,我们用随机离散掺杂剂(rdd)模拟rtd,作为设备中统计变异性的来源。我们的工作表明,rdd的位置和数量与主要器件输出特性(如谐振峰值电压和电流(V$_\text{r}$和I$_\text{r}$)变化之间存在直接相关性。在rtd中,这种V$_\text{r}$和I$_\text{r}$的变异是独立的,但也是相关的。因此,这两个参数可以一起用于对信息进行编码。这为使用单个或多个rtd作为物理不可克隆功能(puf)提供了机会和可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Random Discrete Dopants Embedded Nanowire Resonant Tunnelling Diodes for Generation of Physically Unclonable Functions
In this work, we have performed quantum mechanical simulations of current flow in double-barrier III-V (GaAs/AlGaAs) nanowire resonant tunneling diodes (RTDs). Our simulations are based on the non-equilibrium Green's function (NEGF) quantum transport formalism implemented within our in-house simulator called NESS (Nano-Electronics Simulation Software). The NEGF formalism allows us to capture the detailed physical picture of quantum mechanical effects such as electrostatic quantum confinement, resonant tunneling of electrons through barriers in such structures and negative differential resistance. Also, by using NESS capabilities, we have simulated RTDs with Random Discrete Dopants (RDDs) as a source of statistical variability in the device. Our work shows that there is a direct correlation between the positions and the numbers of RDDs and main device output characteristics such as resonant-peak voltage and current (V $_\text{r}$ and I $_\text{r}$ ) variations. Such V $_\text{r}$ and I $_\text{r}$ variability in RTDs is shown to be independent and yet also correlated. Hence, both parameters can be used together to encode information. This provides the opportunity and possibility for using a single or multiple RTDs as Physical Unclonable Functions (PUFs).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信