{"title":"HO-1可抑制NF-kB信号通路,从而介导脑出血中小胶质细胞的极化和吞噬作用。","authors":"Weiping Chen, Zhiping Wu, Zhijuan Cheng, Yangbo Zhang, Qinghua Luo, Min Yin","doi":"10.1016/j.neuroscience.2024.12.020","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microglia polarization plays a crucial role in inflammatory injury of brain following intracerebral hemorrhage (ICH). Heme oxygenase-1 (HO-1) has demonstrated protective properties against inflammation and promote hematoma clearance after ICH. The objective of this study was to explore impacts of HO-1 on microglia polarization and phagocytosis after ICH, along with the underlying mechanism.</p><p><strong>Methods: </strong>ICH model was constructed in C57BL/6 mice. Neurological deficit of ICH mice was evaluated. HE detected pathological changes of mouse brain tissue. Immunofluorescence staining tested co-localization between HO-1 or NF-κB p65 and IBA1. The expressions of gene and proteins were detected by RT-qPCR and Western blot, respectively. Flow cytometry determined microglial polarization phenotype and neuron apoptosis. Cell viability of neuron was assessed by CCK-8. Red blood cells labeled by PKH-26 and co-cultured with microglia for examining microglial erythrophagocytosis.</p><p><strong>Results: </strong>Both HO-1 and NF-κB p65 phosphorylation were elevated in brain tissues of ICH mice. ZnPP, a HO-1 inhibitor, could exacerbate microglial M1 polarization and nerve injury, as well as repress microglial erythrophagocytosis in vitro and hematoma clearance in vivo. On the contrary, Tat-NBD, a NF-κB inhibitor, greatly suppressed microglial M1 polarization, and induced M2 polarization and microglial erythrophagocytosis, thus improving nerve injury and hematoma clearance after ICH. Notably, it was observed that NF-κB p65 could be activated by ZnPP treatment, and the regulatory roles of ZnPP on microglial polarization and erythrophagocytosis after ICH in vivo and in vitro were all diminished by Tat-NBD.</p><p><strong>Conclusion: </strong>Therefore, our data demonstrated that HO-1 alleviated nerve injury and induced M2 polarization and phagocytosis of microglia after ICH via inhibiting NF-κB signaling pathway, which could provide deepen the pathological understanding of ICH and provide potential intervention targets and drug candidate for ICH.</p>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":" ","pages":"17-27"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HO-1 represses NF-κB signaling pathway to mediate microglia polarization and phagocytosis in intracerebral hemorrhage.\",\"authors\":\"Weiping Chen, Zhiping Wu, Zhijuan Cheng, Yangbo Zhang, Qinghua Luo, Min Yin\",\"doi\":\"10.1016/j.neuroscience.2024.12.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microglia polarization plays a crucial role in inflammatory injury of brain following intracerebral hemorrhage (ICH). Heme oxygenase-1 (HO-1) has demonstrated protective properties against inflammation and promote hematoma clearance after ICH. The objective of this study was to explore impacts of HO-1 on microglia polarization and phagocytosis after ICH, along with the underlying mechanism.</p><p><strong>Methods: </strong>ICH model was constructed in C57BL/6 mice. Neurological deficit of ICH mice was evaluated. HE detected pathological changes of mouse brain tissue. Immunofluorescence staining tested co-localization between HO-1 or NF-κB p65 and IBA1. The expressions of gene and proteins were detected by RT-qPCR and Western blot, respectively. Flow cytometry determined microglial polarization phenotype and neuron apoptosis. Cell viability of neuron was assessed by CCK-8. Red blood cells labeled by PKH-26 and co-cultured with microglia for examining microglial erythrophagocytosis.</p><p><strong>Results: </strong>Both HO-1 and NF-κB p65 phosphorylation were elevated in brain tissues of ICH mice. ZnPP, a HO-1 inhibitor, could exacerbate microglial M1 polarization and nerve injury, as well as repress microglial erythrophagocytosis in vitro and hematoma clearance in vivo. On the contrary, Tat-NBD, a NF-κB inhibitor, greatly suppressed microglial M1 polarization, and induced M2 polarization and microglial erythrophagocytosis, thus improving nerve injury and hematoma clearance after ICH. Notably, it was observed that NF-κB p65 could be activated by ZnPP treatment, and the regulatory roles of ZnPP on microglial polarization and erythrophagocytosis after ICH in vivo and in vitro were all diminished by Tat-NBD.</p><p><strong>Conclusion: </strong>Therefore, our data demonstrated that HO-1 alleviated nerve injury and induced M2 polarization and phagocytosis of microglia after ICH via inhibiting NF-κB signaling pathway, which could provide deepen the pathological understanding of ICH and provide potential intervention targets and drug candidate for ICH.</p>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\" \",\"pages\":\"17-27\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroscience.2024.12.020\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroscience.2024.12.020","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
HO-1 represses NF-κB signaling pathway to mediate microglia polarization and phagocytosis in intracerebral hemorrhage.
Background: Microglia polarization plays a crucial role in inflammatory injury of brain following intracerebral hemorrhage (ICH). Heme oxygenase-1 (HO-1) has demonstrated protective properties against inflammation and promote hematoma clearance after ICH. The objective of this study was to explore impacts of HO-1 on microglia polarization and phagocytosis after ICH, along with the underlying mechanism.
Methods: ICH model was constructed in C57BL/6 mice. Neurological deficit of ICH mice was evaluated. HE detected pathological changes of mouse brain tissue. Immunofluorescence staining tested co-localization between HO-1 or NF-κB p65 and IBA1. The expressions of gene and proteins were detected by RT-qPCR and Western blot, respectively. Flow cytometry determined microglial polarization phenotype and neuron apoptosis. Cell viability of neuron was assessed by CCK-8. Red blood cells labeled by PKH-26 and co-cultured with microglia for examining microglial erythrophagocytosis.
Results: Both HO-1 and NF-κB p65 phosphorylation were elevated in brain tissues of ICH mice. ZnPP, a HO-1 inhibitor, could exacerbate microglial M1 polarization and nerve injury, as well as repress microglial erythrophagocytosis in vitro and hematoma clearance in vivo. On the contrary, Tat-NBD, a NF-κB inhibitor, greatly suppressed microglial M1 polarization, and induced M2 polarization and microglial erythrophagocytosis, thus improving nerve injury and hematoma clearance after ICH. Notably, it was observed that NF-κB p65 could be activated by ZnPP treatment, and the regulatory roles of ZnPP on microglial polarization and erythrophagocytosis after ICH in vivo and in vitro were all diminished by Tat-NBD.
Conclusion: Therefore, our data demonstrated that HO-1 alleviated nerve injury and induced M2 polarization and phagocytosis of microglia after ICH via inhibiting NF-κB signaling pathway, which could provide deepen the pathological understanding of ICH and provide potential intervention targets and drug candidate for ICH.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.