{"title":"ι-卡拉胶对大豆分离蛋白/λ-卡拉胶体系网络结构及凝胶相关性能的增强机理","authors":"Dongling Qiao, Yuyan Zhang, Farong Sun, Michelle Yoo, Guohua Zhao, Binjia Zhang","doi":"10.1016/j.foodchem.2024.142476","DOIUrl":null,"url":null,"abstract":"Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate (SPI)/λ-carrageenan system was investigated. Adding ι-carrageenan decreased SPI particles' size in nano-scale, reduced hydrophobic interactions by suppressing exposure of hydrophobic groups, and increased the disulfide bonds in SPI. With rising ι-carrageenan content (< 0.55 %), the interaction between ι-carrageenan and SPI was enhanced mainly through electrostatic interaction and hydrogen bond. Meanwhile, SPI particles were reduced and their stacking compactness was increased as well. These contributed to the improvement of network structure and thus increased weakly bonded water from 97.7 to 98.5 %, water holding capacity from 55.29 % to 61.70 % and gel hardness from 0.53 to 1.30 N. Higher ι-carrageenan content (> 0.55 %) induced micro-phase separation as shown by CLSM images, and led to reduction of gel hardness. These results favor the rational design and application of SPI-based gel systems with desired practical properties.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"42 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate/λ-carrageenan system\",\"authors\":\"Dongling Qiao, Yuyan Zhang, Farong Sun, Michelle Yoo, Guohua Zhao, Binjia Zhang\",\"doi\":\"10.1016/j.foodchem.2024.142476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate (SPI)/λ-carrageenan system was investigated. Adding ι-carrageenan decreased SPI particles' size in nano-scale, reduced hydrophobic interactions by suppressing exposure of hydrophobic groups, and increased the disulfide bonds in SPI. With rising ι-carrageenan content (< 0.55 %), the interaction between ι-carrageenan and SPI was enhanced mainly through electrostatic interaction and hydrogen bond. Meanwhile, SPI particles were reduced and their stacking compactness was increased as well. These contributed to the improvement of network structure and thus increased weakly bonded water from 97.7 to 98.5 %, water holding capacity from 55.29 % to 61.70 % and gel hardness from 0.53 to 1.30 N. Higher ι-carrageenan content (> 0.55 %) induced micro-phase separation as shown by CLSM images, and led to reduction of gel hardness. These results favor the rational design and application of SPI-based gel systems with desired practical properties.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142476\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142476","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate/λ-carrageenan system
Enhancement mechanism of ι-carrageenan on the network structure and gel-related properties of soy protein isolate (SPI)/λ-carrageenan system was investigated. Adding ι-carrageenan decreased SPI particles' size in nano-scale, reduced hydrophobic interactions by suppressing exposure of hydrophobic groups, and increased the disulfide bonds in SPI. With rising ι-carrageenan content (< 0.55 %), the interaction between ι-carrageenan and SPI was enhanced mainly through electrostatic interaction and hydrogen bond. Meanwhile, SPI particles were reduced and their stacking compactness was increased as well. These contributed to the improvement of network structure and thus increased weakly bonded water from 97.7 to 98.5 %, water holding capacity from 55.29 % to 61.70 % and gel hardness from 0.53 to 1.30 N. Higher ι-carrageenan content (> 0.55 %) induced micro-phase separation as shown by CLSM images, and led to reduction of gel hardness. These results favor the rational design and application of SPI-based gel systems with desired practical properties.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.