记忆发展,结构,连接和海马体指数。

IF 2.4 3区 医学 Q3 NEUROSCIENCES
Hippocampus Pub Date : 2024-12-11 DOI:10.1002/hipo.23658
Jerry W. Rudy
{"title":"记忆发展,结构,连接和海马体指数。","authors":"Jerry W. Rudy","doi":"10.1002/hipo.23658","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>When I began my career, I had no idea that much of it would center around the hippocampus. Here I discuss some of the history of how this happened. I briefly mention my early undergraduate life and the problems it posed for getting into graduate school. I describe the unique circumstances that led me to Allan Wagner's laboratory and changed my career trajectory. My path to the hippocampus began with a decision to study memory development. This led to a collaboration with Rob Sutherland that produced the configural theory of the hippocampus. The idea was that the hippocampus facilitated the construction of representations of the co-occurring stimulus elements currently experienced by the organism. Thus, if two elements, A and B, occurred together, a representation, AB, could be constructed that could be discriminated from its elements, A and B. This idea was partially correct, but we missed an important property of the hippocampal system that was recognized by O'Keefe and Nadel, 1978 that is, that the hippocampus is an unmotivated, rapid learning system. Randy O'Reilly and I addressed this issue in what we called conjunctive representation theory and put forth a detailed cortical-hippocampus computational theory to explain how this could work I later realized that our ideas were remarkably like Tim Teyler's indexing theory of how the hippocampal system supports memory. At a Park City meeting, a chance encounter with Tim (whom I had never met) resulted in the opportunity to write a paper with Tim updating the indexing theory, It is my favorite theoretical paper.</p>\n </div>","PeriodicalId":13171,"journal":{"name":"Hippocampus","volume":"35 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memory Development, Configurations, Conjunctions, and the Hippocampal Index\",\"authors\":\"Jerry W. Rudy\",\"doi\":\"10.1002/hipo.23658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>When I began my career, I had no idea that much of it would center around the hippocampus. Here I discuss some of the history of how this happened. I briefly mention my early undergraduate life and the problems it posed for getting into graduate school. I describe the unique circumstances that led me to Allan Wagner's laboratory and changed my career trajectory. My path to the hippocampus began with a decision to study memory development. This led to a collaboration with Rob Sutherland that produced the configural theory of the hippocampus. The idea was that the hippocampus facilitated the construction of representations of the co-occurring stimulus elements currently experienced by the organism. Thus, if two elements, A and B, occurred together, a representation, AB, could be constructed that could be discriminated from its elements, A and B. This idea was partially correct, but we missed an important property of the hippocampal system that was recognized by O'Keefe and Nadel, 1978 that is, that the hippocampus is an unmotivated, rapid learning system. Randy O'Reilly and I addressed this issue in what we called conjunctive representation theory and put forth a detailed cortical-hippocampus computational theory to explain how this could work I later realized that our ideas were remarkably like Tim Teyler's indexing theory of how the hippocampal system supports memory. At a Park City meeting, a chance encounter with Tim (whom I had never met) resulted in the opportunity to write a paper with Tim updating the indexing theory, It is my favorite theoretical paper.</p>\\n </div>\",\"PeriodicalId\":13171,\"journal\":{\"name\":\"Hippocampus\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hippocampus\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hipo.23658\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hippocampus","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hipo.23658","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

当我开始我的职业生涯时,我不知道它会以海马体为中心。在这里,我将讨论这一现象发生的一些历史。我简要地提到了我早期的本科生活,以及它给进入研究生院带来的问题。我描述了导致我来到艾伦·瓦格纳实验室并改变我职业轨迹的独特环境。我的海马体之路始于一个研究记忆发展的决定。这导致他与罗伯·萨瑟兰(Rob Sutherland)合作,提出了海马体的结构理论。这个想法是,海马体促进了生物体当前经历的共同发生的刺激元素的表征的构建。因此,如果A和B两个元素同时出现,就可以构建一个表象AB,这个表象AB可以从它的元素A和B中区分出来。这个想法部分是正确的,但我们忽略了O'Keefe和Nadel(1978)认识到的海马体系统的一个重要特性,即海马体是一个无动机的快速学习系统。Randy O'Reilly和我在我们所谓的联合表征理论中解决了这个问题,并提出了一个详细的皮层-海马体计算理论来解释它是如何工作的,我后来意识到我们的想法非常像Tim Teyler关于海马体系统如何支持记忆的索引理论。在帕克城的一次会议上,我偶然遇到了蒂姆(我从未见过他),这让我有机会和蒂姆一起写一篇更新索引理论的论文,这是我最喜欢的理论论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Memory Development, Configurations, Conjunctions, and the Hippocampal Index

When I began my career, I had no idea that much of it would center around the hippocampus. Here I discuss some of the history of how this happened. I briefly mention my early undergraduate life and the problems it posed for getting into graduate school. I describe the unique circumstances that led me to Allan Wagner's laboratory and changed my career trajectory. My path to the hippocampus began with a decision to study memory development. This led to a collaboration with Rob Sutherland that produced the configural theory of the hippocampus. The idea was that the hippocampus facilitated the construction of representations of the co-occurring stimulus elements currently experienced by the organism. Thus, if two elements, A and B, occurred together, a representation, AB, could be constructed that could be discriminated from its elements, A and B. This idea was partially correct, but we missed an important property of the hippocampal system that was recognized by O'Keefe and Nadel, 1978 that is, that the hippocampus is an unmotivated, rapid learning system. Randy O'Reilly and I addressed this issue in what we called conjunctive representation theory and put forth a detailed cortical-hippocampus computational theory to explain how this could work I later realized that our ideas were remarkably like Tim Teyler's indexing theory of how the hippocampal system supports memory. At a Park City meeting, a chance encounter with Tim (whom I had never met) resulted in the opportunity to write a paper with Tim updating the indexing theory, It is my favorite theoretical paper.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Hippocampus
Hippocampus 医学-神经科学
CiteScore
5.80
自引率
5.70%
发文量
79
审稿时长
3-8 weeks
期刊介绍: Hippocampus provides a forum for the exchange of current information between investigators interested in the neurobiology of the hippocampal formation and related structures. While the relationships of submitted papers to the hippocampal formation will be evaluated liberally, the substance of appropriate papers should deal with the hippocampal formation per se or with the interaction between the hippocampal formation and other brain regions. The scope of Hippocampus is wide: single and multidisciplinary experimental studies from all fields of basic science, theoretical papers, papers dealing with hippocampal preparations as models for understanding the central nervous system, and clinical studies will be considered for publication. The Editor especially encourages the submission of papers that contribute to a functional understanding of the hippocampal formation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信