Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie
{"title":"甜菜碱吡啶的荧光调制:机械荧光变色研究","authors":"Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie","doi":"10.1039/D4TC04290E","DOIUrl":null,"url":null,"abstract":"<p >A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19371-19385"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†\",\"authors\":\"Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie\",\"doi\":\"10.1039/D4TC04290E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 48\",\"pages\":\" 19371-19385\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc04290e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc04290e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†
A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors