甜菜碱吡啶的荧光调制:机械荧光变色研究

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie
{"title":"甜菜碱吡啶的荧光调制:机械荧光变色研究","authors":"Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie","doi":"10.1039/D4TC04290E","DOIUrl":null,"url":null,"abstract":"<p >A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19371-19385"},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†\",\"authors\":\"Peter W. McDonald, Jingjing Xu, Dale R. Lonsdale, Isabelle Jones, Benjamin Poggi, Rosalind P. Cox, Stéphane Aloise, Andrew D. Scully, Clémence Allain, Laurence Bodelot, Stephen A. Moggach, Toby D. M. Bell, Rémi Métivier, Sebastian G. B. Furness, Lars Goerigk and Chris Ritchie\",\"doi\":\"10.1039/D4TC04290E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 48\",\"pages\":\" 19371-19385\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc04290e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc04290e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

施加力时材料荧光光谱的可逆变化被称为机械荧光变色(MFC),是一个成熟的研究领域。然而,每种新材料的变色机制可能不同,阐明这些机制很重要,原因有很多,包括合理设计具有目标特性的新类似物。本文报道了两种MFC甜菜碱吡啶的光物理性质和机理。在机械力的作用下,晶体和非晶相共存,非晶相的构象柔韧性增加,促进了发射的红移。这一解释得到了一系列光谱技术的支持,包括电子衍射(ED)和荧光寿命成像显微镜(FLIM)测绘,据我们所知,这两种技术尚未应用于MFC领域的机械研磨颗粒。对于其中一种化合物,在磨削微晶上的ED明确显示研磨后保留了相同的晶相,并有非晶态贡献,为结晶-非晶态机制提供了直接证据,并且这两种相的存在得到了FLIM图的进一步支持。我们设想这些技术将对类似材料的分析具有很高的指导意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†

Fluorescence modulation of pyridinium betaines: a mechanofluorochromic investigation†

A reversible change in a material's fluorescence spectrum on the application of force is known as mechanofluorochromism (MFC) and is a well-established field of study. However, the mechanism(s) responsible for the chromism may be different for each new material and it is important to elucidate these for many reasons, including the rational design of new analogues with targeted properties. Herein, the photophysical properties and mechanistic understanding of two MFC pyridinium betaines are reported. The emission sensitivity is explained by the coexistence of crystalline and amorphous phases after the application of mechanical force, with increased conformational flexibility in the amorphous phase facilitating red-shifts in emission. This explanation is supported by evidence from a range of spectroscopic techniques, including electron diffraction (ED) and fluorescence lifetime imaging microscopy (FLIM) mapping, two techniques that have, to the best of our knowledge, not been applied in the field of MFC to mechanically ground particles. For one of the compounds, ED on ground microcrystallites shows unambiguously that the same crystalline phase is retained after grinding, along with an amorphous contribution, providing direct evidence for the crystalline-amorphous mechanism, and the presence of these two phases is further supported by FLIM mapping. We envision these techniques will be highly instructive for the analysis of similar materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信