Cr掺杂没尔格曼酸锌(ZGGO:Cr)†的光致发光、持续发光和热致发光研究

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Duarte M. Esteves, Maria S. Batista, Joana Rodrigues, Ana V. Girão, Luís C. Alves, Ana L. Rodrigues, M. Isabel Dias, Florinda M. Costa, Katharina Lorenz, Sónia O. Pereira, Teresa Monteiro and Marco Peres
{"title":"Cr掺杂没尔格曼酸锌(ZGGO:Cr)†的光致发光、持续发光和热致发光研究","authors":"Duarte M. Esteves, Maria S. Batista, Joana Rodrigues, Ana V. Girão, Luís C. Alves, Ana L. Rodrigues, M. Isabel Dias, Florinda M. Costa, Katharina Lorenz, Sónia O. Pereira, Teresa Monteiro and Marco Peres","doi":"10.1039/D4TC03924F","DOIUrl":null,"url":null,"abstract":"<p >This paper reports a comprehensive study of single-phase polycrystalline chromium-doped zinc gallogermanate (ZGGO:Cr) synthesised by a high-temperature solid-state reaction, employing photoluminescence (PL), persistent luminescence (PersL) and thermoluminescence (TL) measurements. A bandgap energy of ∼4.77 eV (260 nm) was estimated by optical reflectance. The ZGGO:Cr luminescence was dominated by a red/near-infrared emission due to Cr<small><sup>3+</sup></small> optical centres, which displayed well-resolved R1, R2, N1 and N2 lines, and a broad vibronic progression. PL excitation (PLE) data revealed that those centres were preferentially populated <em>via</em> intraionic absorption, being also excited <em>via</em> band-to-band absorption and by a defect excitation band at ∼0.9 eV below the conduction band, whose origin remains unknown. PersL of more than 10 h was identified and attributed to the N2 Cr<small><sup>3+</sup></small>-related defect. The TL results suggest a continuous distribution of electronic states with activation energies ranging from about 0.7 eV to 1.2 eV. An effective density of states was obtained for different delay times between irradiation and heating, revealing a rapid depopulation for activation energies below ∼1 eV. In short, this research contributes to a better understanding of traps in ZGGO:Cr and highlights the potential of the Cr<small><sup>3+</sup></small>-related emission in this material for dosimetric purposes, paving the way for developing novel ZGGO:Cr-based devices.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 48","pages":" 19359-19370"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photoluminescence, persistent luminescence and thermoluminescence studies of Cr-doped zinc gallogermanate (ZGGO:Cr)†\",\"authors\":\"Duarte M. Esteves, Maria S. Batista, Joana Rodrigues, Ana V. Girão, Luís C. Alves, Ana L. Rodrigues, M. Isabel Dias, Florinda M. Costa, Katharina Lorenz, Sónia O. Pereira, Teresa Monteiro and Marco Peres\",\"doi\":\"10.1039/D4TC03924F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper reports a comprehensive study of single-phase polycrystalline chromium-doped zinc gallogermanate (ZGGO:Cr) synthesised by a high-temperature solid-state reaction, employing photoluminescence (PL), persistent luminescence (PersL) and thermoluminescence (TL) measurements. A bandgap energy of ∼4.77 eV (260 nm) was estimated by optical reflectance. The ZGGO:Cr luminescence was dominated by a red/near-infrared emission due to Cr<small><sup>3+</sup></small> optical centres, which displayed well-resolved R1, R2, N1 and N2 lines, and a broad vibronic progression. PL excitation (PLE) data revealed that those centres were preferentially populated <em>via</em> intraionic absorption, being also excited <em>via</em> band-to-band absorption and by a defect excitation band at ∼0.9 eV below the conduction band, whose origin remains unknown. PersL of more than 10 h was identified and attributed to the N2 Cr<small><sup>3+</sup></small>-related defect. The TL results suggest a continuous distribution of electronic states with activation energies ranging from about 0.7 eV to 1.2 eV. An effective density of states was obtained for different delay times between irradiation and heating, revealing a rapid depopulation for activation energies below ∼1 eV. In short, this research contributes to a better understanding of traps in ZGGO:Cr and highlights the potential of the Cr<small><sup>3+</sup></small>-related emission in this material for dosimetric purposes, paving the way for developing novel ZGGO:Cr-based devices.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 48\",\"pages\":\" 19359-19370\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03924f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03924f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用光致发光(PL)、持续发光(PersL)和热致发光(TL)的测量方法,对高温固相反应合成的单相多晶掺铬没尔格曼酸锌(ZGGO:Cr)进行了全面的研究。通过光学反射率估计带隙能量为~ 4.77 eV (260 nm)。由于Cr3+光学中心的存在,ZGGO:Cr的发光以红/近红外为主,呈现出分辨率较高的R1、R2、N1和N2谱线,且具有较宽的振动进阶。PL激发(PLE)数据显示,这些中心优先通过电子内吸收填充,也通过带对带吸收和低于导带约0.9 eV的缺陷激发带激发,其起源尚不清楚。超过10 h的PersL被确定为N2 Cr3+相关缺陷。TL结果表明,电子态呈连续分布,活化能在0.7 ~ 1.2 eV之间。在辐照和加热之间的不同延迟时间获得了有效态密度,揭示了活化能低于~ 1 eV时的快速减少。简而言之,本研究有助于更好地了解ZGGO:Cr中的陷阱,并突出了该材料中Cr3+相关发射的剂量学潜力,为开发新型ZGGO:Cr基器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Photoluminescence, persistent luminescence and thermoluminescence studies of Cr-doped zinc gallogermanate (ZGGO:Cr)†

Photoluminescence, persistent luminescence and thermoluminescence studies of Cr-doped zinc gallogermanate (ZGGO:Cr)†

This paper reports a comprehensive study of single-phase polycrystalline chromium-doped zinc gallogermanate (ZGGO:Cr) synthesised by a high-temperature solid-state reaction, employing photoluminescence (PL), persistent luminescence (PersL) and thermoluminescence (TL) measurements. A bandgap energy of ∼4.77 eV (260 nm) was estimated by optical reflectance. The ZGGO:Cr luminescence was dominated by a red/near-infrared emission due to Cr3+ optical centres, which displayed well-resolved R1, R2, N1 and N2 lines, and a broad vibronic progression. PL excitation (PLE) data revealed that those centres were preferentially populated via intraionic absorption, being also excited via band-to-band absorption and by a defect excitation band at ∼0.9 eV below the conduction band, whose origin remains unknown. PersL of more than 10 h was identified and attributed to the N2 Cr3+-related defect. The TL results suggest a continuous distribution of electronic states with activation energies ranging from about 0.7 eV to 1.2 eV. An effective density of states was obtained for different delay times between irradiation and heating, revealing a rapid depopulation for activation energies below ∼1 eV. In short, this research contributes to a better understanding of traps in ZGGO:Cr and highlights the potential of the Cr3+-related emission in this material for dosimetric purposes, paving the way for developing novel ZGGO:Cr-based devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信