个性化联邦学习的协同神经架构搜索

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yi Liu;Song Guo;Jie Zhang;Zicong Hong;Yufeng Zhan;Qihua Zhou
{"title":"个性化联邦学习的协同神经架构搜索","authors":"Yi Liu;Song Guo;Jie Zhang;Zicong Hong;Yufeng Zhan;Qihua Zhou","doi":"10.1109/TC.2024.3477945","DOIUrl":null,"url":null,"abstract":"Personalized federated learning (pFL) is a promising approach to train customized models for multiple clients over heterogeneous data distributions. However, existing works on pFL often rely on the optimization of model parameters and ignore the personalization demand on neural network architecture, which can greatly affect the model performance in practice. Therefore, generating personalized models with different neural architectures for different clients is a key issue in implementing pFL in a heterogeneous environment. Motivated by Neural Architecture Search (NAS), a model architecture searching methodology, this paper aims to automate the model design in a collaborative manner while achieving good training performance for each client. Specifically, we reconstruct the centralized searching of NAS into the distributed scheme called Personalized Architecture Search (PAS), where differentiable architecture fine-tuning is achieved via gradient-descent optimization, thus making each client obtain the most appropriate model. Furthermore, to aggregate knowledge from heterogeneous neural architectures, a knowledge distillation-based training framework is proposed to achieve a good trade-off between generalization and personalization in federated learning. Extensive experiments demonstrate that our architecture-level personalization method achieves higher accuracy under the non-iid settings, while not aggravating model complexity over state-of-the-art benchmarks.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"250-262"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Neural Architecture Search for Personalized Federated Learning\",\"authors\":\"Yi Liu;Song Guo;Jie Zhang;Zicong Hong;Yufeng Zhan;Qihua Zhou\",\"doi\":\"10.1109/TC.2024.3477945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalized federated learning (pFL) is a promising approach to train customized models for multiple clients over heterogeneous data distributions. However, existing works on pFL often rely on the optimization of model parameters and ignore the personalization demand on neural network architecture, which can greatly affect the model performance in practice. Therefore, generating personalized models with different neural architectures for different clients is a key issue in implementing pFL in a heterogeneous environment. Motivated by Neural Architecture Search (NAS), a model architecture searching methodology, this paper aims to automate the model design in a collaborative manner while achieving good training performance for each client. Specifically, we reconstruct the centralized searching of NAS into the distributed scheme called Personalized Architecture Search (PAS), where differentiable architecture fine-tuning is achieved via gradient-descent optimization, thus making each client obtain the most appropriate model. Furthermore, to aggregate knowledge from heterogeneous neural architectures, a knowledge distillation-based training framework is proposed to achieve a good trade-off between generalization and personalization in federated learning. Extensive experiments demonstrate that our architecture-level personalization method achieves higher accuracy under the non-iid settings, while not aggravating model complexity over state-of-the-art benchmarks.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 1\",\"pages\":\"250-262\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713262/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10713262/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

个性化联邦学习(pFL)是一种很有前途的方法,可以在异构数据分布上为多个客户端训练定制模型。然而,现有的pFL研究往往依赖于模型参数的优化,而忽略了神经网络结构的个性化需求,这在实际应用中会极大地影响模型的性能。因此,为不同的客户端生成具有不同神经结构的个性化模型是在异构环境中实现pFL的关键问题。基于神经架构搜索(NAS)这一模型架构搜索方法,本文旨在以协作方式实现模型设计的自动化,同时为每个客户端提供良好的训练性能。具体而言,我们将NAS的集中搜索重构为一种名为个性化架构搜索(Personalized Architecture Search, PAS)的分布式方案,其中通过梯度下降优化实现可微架构微调,从而使每个客户端获得最合适的模型。此外,为了从异构神经结构中聚合知识,提出了一种基于知识蒸馏的训练框架,以实现联邦学习中泛化和个性化之间的良好权衡。大量的实验表明,我们的架构级个性化方法在非id设置下实现了更高的精度,同时与最先进的基准测试相比,不会增加模型的复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Neural Architecture Search for Personalized Federated Learning
Personalized federated learning (pFL) is a promising approach to train customized models for multiple clients over heterogeneous data distributions. However, existing works on pFL often rely on the optimization of model parameters and ignore the personalization demand on neural network architecture, which can greatly affect the model performance in practice. Therefore, generating personalized models with different neural architectures for different clients is a key issue in implementing pFL in a heterogeneous environment. Motivated by Neural Architecture Search (NAS), a model architecture searching methodology, this paper aims to automate the model design in a collaborative manner while achieving good training performance for each client. Specifically, we reconstruct the centralized searching of NAS into the distributed scheme called Personalized Architecture Search (PAS), where differentiable architecture fine-tuning is achieved via gradient-descent optimization, thus making each client obtain the most appropriate model. Furthermore, to aggregate knowledge from heterogeneous neural architectures, a knowledge distillation-based training framework is proposed to achieve a good trade-off between generalization and personalization in federated learning. Extensive experiments demonstrate that our architecture-level personalization method achieves higher accuracy under the non-iid settings, while not aggravating model complexity over state-of-the-art benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信