使用可变长度算法的并行模乘法

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shahab Mirzaei-Teshnizi;Parviz Keshavarzi
{"title":"使用可变长度算法的并行模乘法","authors":"Shahab Mirzaei-Teshnizi;Parviz Keshavarzi","doi":"10.1109/TC.2024.3475574","DOIUrl":null,"url":null,"abstract":"This paper presents two improved modular multiplication algorithms: variable length Interleaved modular multiplication (VLIM) algorithm and parallel modular multiplication (P_MM) method using variable length algorithms to achieve high throughput rates. The new Interleaved modular multiplication algorithm applies the zero counting and partitioning algorithm to a multiplier’s non-adjacent form (NAF). It divides this input into sections with variable-radix. The sections include a digit of zero sequences and a non-zero digit (-1 or 1) in the most valuable place. Therefore, in addition to reducing the number of required clock pulses, high-radix partial multiplication \n<inline-formula><tex-math>$\\mathbf{X}^{\\left(\\mathbf{i}\\right)}\\cdot \\mathbf{Y}$</tex-math></inline-formula>\n is simplified and performed as a binary addition or subtraction operation, and multiplication operations for consecutive zero bits are executed in one clock cycle instead of several clock cycles. The proposed parallel modular multiplication algorithm divides the multiplier into two parts. It utilizes (VLIM) and variable length Montgomery modular multiplication (VLM3) methods to compute the modular multiplication for the upper and lower portions in parallel, according to the proximity of their multiplication time. The implementation results on a Xilinx Virtex-7 FPGA show that the parallel modular multiplication computes a 2048-bit modular multiplication in 0.903 µs, with a maximum clock frequency of 387 MHz and area × time per bit value equal to 9.14.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 1","pages":"143-154"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Modular Multiplication Using Variable Length Algorithms\",\"authors\":\"Shahab Mirzaei-Teshnizi;Parviz Keshavarzi\",\"doi\":\"10.1109/TC.2024.3475574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two improved modular multiplication algorithms: variable length Interleaved modular multiplication (VLIM) algorithm and parallel modular multiplication (P_MM) method using variable length algorithms to achieve high throughput rates. The new Interleaved modular multiplication algorithm applies the zero counting and partitioning algorithm to a multiplier’s non-adjacent form (NAF). It divides this input into sections with variable-radix. The sections include a digit of zero sequences and a non-zero digit (-1 or 1) in the most valuable place. Therefore, in addition to reducing the number of required clock pulses, high-radix partial multiplication \\n<inline-formula><tex-math>$\\\\mathbf{X}^{\\\\left(\\\\mathbf{i}\\\\right)}\\\\cdot \\\\mathbf{Y}$</tex-math></inline-formula>\\n is simplified and performed as a binary addition or subtraction operation, and multiplication operations for consecutive zero bits are executed in one clock cycle instead of several clock cycles. The proposed parallel modular multiplication algorithm divides the multiplier into two parts. It utilizes (VLIM) and variable length Montgomery modular multiplication (VLM3) methods to compute the modular multiplication for the upper and lower portions in parallel, according to the proximity of their multiplication time. The implementation results on a Xilinx Virtex-7 FPGA show that the parallel modular multiplication computes a 2048-bit modular multiplication in 0.903 µs, with a maximum clock frequency of 387 MHz and area × time per bit value equal to 9.14.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 1\",\"pages\":\"143-154\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10707249/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10707249/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了两种改进的模乘法算法:变长交错模乘法(VLIM)算法和利用变长算法实现高吞吐量的并行模乘法(P_MM)方法。新的交错模乘法算法将零计数和分划算法应用于乘数的非相邻形式(NAF)。它将这个输入分成基数可变的部分。节包括一个零序列的数字和一个非零数字(-1或1)在最有值的地方。因此,除了减少所需时钟脉冲的数量外,高基数部分乘法$\mathbf{X}^{\left(\mathbf{i}\right)}\cdot \mathbf{Y}$被简化并作为二进制加减操作执行,并且连续零位的乘法操作在一个时钟周期内执行,而不是几个时钟周期。提出的并行模乘法算法将乘法器分为两部分。利用(VLIM)和变长Montgomery模乘法(VLM3)方法,根据上下部分相乘时间的接近程度,并行计算上下部分的模乘法。在Xilinx Virtex-7 FPGA上的实现结果表明,并行模块化乘法在0.903µs内计算2048位模块化乘法,最大时钟频率为387 MHz,每比特面积×时间值为9.14。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Modular Multiplication Using Variable Length Algorithms
This paper presents two improved modular multiplication algorithms: variable length Interleaved modular multiplication (VLIM) algorithm and parallel modular multiplication (P_MM) method using variable length algorithms to achieve high throughput rates. The new Interleaved modular multiplication algorithm applies the zero counting and partitioning algorithm to a multiplier’s non-adjacent form (NAF). It divides this input into sections with variable-radix. The sections include a digit of zero sequences and a non-zero digit (-1 or 1) in the most valuable place. Therefore, in addition to reducing the number of required clock pulses, high-radix partial multiplication $\mathbf{X}^{\left(\mathbf{i}\right)}\cdot \mathbf{Y}$ is simplified and performed as a binary addition or subtraction operation, and multiplication operations for consecutive zero bits are executed in one clock cycle instead of several clock cycles. The proposed parallel modular multiplication algorithm divides the multiplier into two parts. It utilizes (VLIM) and variable length Montgomery modular multiplication (VLM3) methods to compute the modular multiplication for the upper and lower portions in parallel, according to the proximity of their multiplication time. The implementation results on a Xilinx Virtex-7 FPGA show that the parallel modular multiplication computes a 2048-bit modular multiplication in 0.903 µs, with a maximum clock frequency of 387 MHz and area × time per bit value equal to 9.14.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信