{"title":"基于热刺激的自主出汗可穿戴胆红素传感平台","authors":"Zhongzeng Zhou, Jing Wang, Tailin Xu, Xueji Zhang","doi":"10.1021/acs.analchem.4c04592","DOIUrl":null,"url":null,"abstract":"Bilirubin (BR), with diverse physiological functions and health implications, is a vital biomarker related to liver diseases such as jaundice and hepatitis. It is generally tested by blood. Sweat wearable devices provide a noninvasive way to monitor BR but face challenges in stability and selectivity, and acquiring sufficient sweat is difficult for sedentary individuals. This study introduces an innovative autonomous sweating wearable platform for noninvasive monitoring of bilirubin levels. The platform incorporates an autonomous heating film for controlled sweat extraction, a skin-interfaced microfluidic system for efficient sweat sampling, and a flexible electrode for accurate BR sensing. The utilization of MXene/MWCNT in the platform enables precise and sensitive electrochemical detection of trace-level BR directly on the skin. The integration of a laser-engraved flexible heating film and a microfluidic system allows for controlled and reliable sweat sampling, enabling easy biomarker detection at rest. The platform demonstrates effective sweat sampling and accurate BR detection, showcasing its potential for noninvasive health monitoring applications. Its design and functionality offer a promising solution for continuous and convenient monitoring of BR levels, providing a novel approach to sweat biomarker analysis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"141 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Sweating Wearable Platform for Bilirubin Sensing Based on Thermal Stimulation\",\"authors\":\"Zhongzeng Zhou, Jing Wang, Tailin Xu, Xueji Zhang\",\"doi\":\"10.1021/acs.analchem.4c04592\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bilirubin (BR), with diverse physiological functions and health implications, is a vital biomarker related to liver diseases such as jaundice and hepatitis. It is generally tested by blood. Sweat wearable devices provide a noninvasive way to monitor BR but face challenges in stability and selectivity, and acquiring sufficient sweat is difficult for sedentary individuals. This study introduces an innovative autonomous sweating wearable platform for noninvasive monitoring of bilirubin levels. The platform incorporates an autonomous heating film for controlled sweat extraction, a skin-interfaced microfluidic system for efficient sweat sampling, and a flexible electrode for accurate BR sensing. The utilization of MXene/MWCNT in the platform enables precise and sensitive electrochemical detection of trace-level BR directly on the skin. The integration of a laser-engraved flexible heating film and a microfluidic system allows for controlled and reliable sweat sampling, enabling easy biomarker detection at rest. The platform demonstrates effective sweat sampling and accurate BR detection, showcasing its potential for noninvasive health monitoring applications. Its design and functionality offer a promising solution for continuous and convenient monitoring of BR levels, providing a novel approach to sweat biomarker analysis.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c04592\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04592","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Autonomous Sweating Wearable Platform for Bilirubin Sensing Based on Thermal Stimulation
Bilirubin (BR), with diverse physiological functions and health implications, is a vital biomarker related to liver diseases such as jaundice and hepatitis. It is generally tested by blood. Sweat wearable devices provide a noninvasive way to monitor BR but face challenges in stability and selectivity, and acquiring sufficient sweat is difficult for sedentary individuals. This study introduces an innovative autonomous sweating wearable platform for noninvasive monitoring of bilirubin levels. The platform incorporates an autonomous heating film for controlled sweat extraction, a skin-interfaced microfluidic system for efficient sweat sampling, and a flexible electrode for accurate BR sensing. The utilization of MXene/MWCNT in the platform enables precise and sensitive electrochemical detection of trace-level BR directly on the skin. The integration of a laser-engraved flexible heating film and a microfluidic system allows for controlled and reliable sweat sampling, enabling easy biomarker detection at rest. The platform demonstrates effective sweat sampling and accurate BR detection, showcasing its potential for noninvasive health monitoring applications. Its design and functionality offer a promising solution for continuous and convenient monitoring of BR levels, providing a novel approach to sweat biomarker analysis.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.