Jianyue Ge, Xueyao Lu, Cancan Liu, Wei Liu, Na Wu, Bingxuan Feng, Xiaoman Sun, Yang Gu
{"title":"脂化耶氏菌高滴度新产樱素的细胞内代谢多模块合成重新设计","authors":"Jianyue Ge, Xueyao Lu, Cancan Liu, Wei Liu, Na Wu, Bingxuan Feng, Xiaoman Sun, Yang Gu","doi":"10.1021/acs.jafc.4c09625","DOIUrl":null,"url":null,"abstract":"Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a <i>Yarrowia lipolytica</i> strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"8 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodule Synthetic Redesign of Intracellular Metabolisms for the High-Titer de Novo Production of Sakuranetin in Yarrowia lipolytica\",\"authors\":\"Jianyue Ge, Xueyao Lu, Cancan Liu, Wei Liu, Na Wu, Bingxuan Feng, Xiaoman Sun, Yang Gu\",\"doi\":\"10.1021/acs.jafc.4c09625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a <i>Yarrowia lipolytica</i> strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c09625\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c09625","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Multimodule Synthetic Redesign of Intracellular Metabolisms for the High-Titer de Novo Production of Sakuranetin in Yarrowia lipolytica
Sakuranetin, a flavonoid phytoalexin, has demonstrated neuroprotective properties and exhibits tyrosinase inhibitory activities, making it highly valuable in the cosmetics and pharmaceutical industries. In this study, we engineered a Yarrowia lipolytica strain for the high-titer de novo production of sakuranetin using glucose as a substrate. To effectively enhance sakuranetin production, we implemented a multimodule engineering strategy that included optimizing the sakuranetin synthesis pathway, designing a regeneration system for the methyl donor S-adenosyl methionine, increasing the malonyl-CoA precursor supplement, and constructing the feedback inhibition-relieved shikimate pathway. Moreover, a transcriptomic analysis was conducted to identify potential targets for further improving sakuranetin synthesis. As a result, the titer of de novo synthesized sakuranetin reached 344.0 mg/L from glucose in a 5 L bioreactor. These achievements hold significant promise for the sustainable and large-scale production of sakuranetin through industrial biomanufacturing.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.