Haisheng Xia;Fei Liao;Binglei Bao;Jintao Chen;Binglu Wang;Qinghua Huang;Zhijun Li
{"title":"人类水下感知增强可穿戴系统的展望","authors":"Haisheng Xia;Fei Liao;Binglei Bao;Jintao Chen;Binglu Wang;Qinghua Huang;Zhijun Li","doi":"10.1109/TCYB.2024.3504840","DOIUrl":null,"url":null,"abstract":"Underwater areas have harsh environments with poor light, limited visibility, and high levels of noise. Humans have a weak perception of position, surroundings, and exterior information when staying underwater, which makes it difficult for humans to carry out complex underwater tasks, such as rescue, observation, and construction. Wearable devices have shown good results in enhancing human sensory function on land, thus they could potentially play a role in enhancing human underwater perception ability. This perspective aims to analyze the state-of-the-art of underwater wearable systems for human perception enhancement. This work discusses the core technology and challenges of human underwater perceptual enhancement, including wearable underwater navigation, underwater environment reconstruction, and underwater sensorial information delivery. Future research could focus on designing waterproof flexible human-machine interfaces for sensing and feedback, exploiting advanced sensors and fusion algorithms for wearable underwater positioning, and studying multimodal information interaction strategies of wearable systems.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 2","pages":"698-711"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Perspective on Wearable Systems for Human Underwater Perceptual Enhancement\",\"authors\":\"Haisheng Xia;Fei Liao;Binglei Bao;Jintao Chen;Binglu Wang;Qinghua Huang;Zhijun Li\",\"doi\":\"10.1109/TCYB.2024.3504840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Underwater areas have harsh environments with poor light, limited visibility, and high levels of noise. Humans have a weak perception of position, surroundings, and exterior information when staying underwater, which makes it difficult for humans to carry out complex underwater tasks, such as rescue, observation, and construction. Wearable devices have shown good results in enhancing human sensory function on land, thus they could potentially play a role in enhancing human underwater perception ability. This perspective aims to analyze the state-of-the-art of underwater wearable systems for human perception enhancement. This work discusses the core technology and challenges of human underwater perceptual enhancement, including wearable underwater navigation, underwater environment reconstruction, and underwater sensorial information delivery. Future research could focus on designing waterproof flexible human-machine interfaces for sensing and feedback, exploiting advanced sensors and fusion algorithms for wearable underwater positioning, and studying multimodal information interaction strategies of wearable systems.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"55 2\",\"pages\":\"698-711\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10788512/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10788512/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Perspective on Wearable Systems for Human Underwater Perceptual Enhancement
Underwater areas have harsh environments with poor light, limited visibility, and high levels of noise. Humans have a weak perception of position, surroundings, and exterior information when staying underwater, which makes it difficult for humans to carry out complex underwater tasks, such as rescue, observation, and construction. Wearable devices have shown good results in enhancing human sensory function on land, thus they could potentially play a role in enhancing human underwater perception ability. This perspective aims to analyze the state-of-the-art of underwater wearable systems for human perception enhancement. This work discusses the core technology and challenges of human underwater perceptual enhancement, including wearable underwater navigation, underwater environment reconstruction, and underwater sensorial information delivery. Future research could focus on designing waterproof flexible human-machine interfaces for sensing and feedback, exploiting advanced sensors and fusion algorithms for wearable underwater positioning, and studying multimodal information interaction strategies of wearable systems.
期刊介绍:
The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.