{"title":"带温度控制的单细胞微吸收光谱系统:系统设计和光谱分析","authors":"Yufei Liu, Bo Li, Yue Sun, Changxu Li, Fengya Lu, Zhensheng Zhong, Jinhua Zhou, Yingying Xie, Shengzhao Zhang, Zhen Liang, Mei Zhou","doi":"10.1063/5.0240029","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell. The device utilizes an illumination source driven by modulated current sources instead of constant current sources and the corresponding spectral signal extraction method to reduce noise levels. It also features a transparent temperature-controlled sample chamber for regulating the sample's temperature, as the absorption of cells may change with temperature. Due to the unwanted baseline drift in the spectral signals, a method of analyzing the similarity degree between the measured spectrum and the standard spectrum is proposed to study the characteristic variation of cells. To verify the feasibility of this method, the device was used for the microscopic spectral measurement and analysis of single red blood cells. The results showed that the variation patterns of spectral parameters correspond to the cell's responses to changes in temperature and storage duration.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single cell micro-absorption spectroscopy system with temperature control: System design and spectral analysis.\",\"authors\":\"Yufei Liu, Bo Li, Yue Sun, Changxu Li, Fengya Lu, Zhensheng Zhong, Jinhua Zhou, Yingying Xie, Shengzhao Zhang, Zhen Liang, Mei Zhou\",\"doi\":\"10.1063/5.0240029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell. The device utilizes an illumination source driven by modulated current sources instead of constant current sources and the corresponding spectral signal extraction method to reduce noise levels. It also features a transparent temperature-controlled sample chamber for regulating the sample's temperature, as the absorption of cells may change with temperature. Due to the unwanted baseline drift in the spectral signals, a method of analyzing the similarity degree between the measured spectrum and the standard spectrum is proposed to study the characteristic variation of cells. To verify the feasibility of this method, the device was used for the microscopic spectral measurement and analysis of single red blood cells. The results showed that the variation patterns of spectral parameters correspond to the cell's responses to changes in temperature and storage duration.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 12\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0240029\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0240029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Single cell micro-absorption spectroscopy system with temperature control: System design and spectral analysis.
Micro-absorption spectroscopy is a useful tool for studying the biological characteristics of single cells. However, the weak spectral signal, due to low absorption caused by the tiny optical path length of the cell, makes the spectral data noisy and difficult to analyze. This paper describes a device for single-cell microspectroscopy measurement that integrates an optical fiber spectrometer and an image CCD within a microscopic system, allowing for the simultaneous acquisition of morphology information and the absorption spectrum of a single cell. The device utilizes an illumination source driven by modulated current sources instead of constant current sources and the corresponding spectral signal extraction method to reduce noise levels. It also features a transparent temperature-controlled sample chamber for regulating the sample's temperature, as the absorption of cells may change with temperature. Due to the unwanted baseline drift in the spectral signals, a method of analyzing the similarity degree between the measured spectrum and the standard spectrum is proposed to study the characteristic variation of cells. To verify the feasibility of this method, the device was used for the microscopic spectral measurement and analysis of single red blood cells. The results showed that the variation patterns of spectral parameters correspond to the cell's responses to changes in temperature and storage duration.
期刊介绍:
Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.