真空高压实验中的 X 射线微放电精细动力学

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
S. Spagnolo;L. Cordaro;N. Pilan;A. De Lorenzi;C. L. Fontana;A. Muraro;T. Patton;F. Pino;G. Croci;R. Gobbo;L. Lotto;I. Mario;E. Martines;D. Rigamonti;E. Spada;M. Tardocchi;M. Zuin
{"title":"真空高压实验中的 X 射线微放电精细动力学","authors":"S. Spagnolo;L. Cordaro;N. Pilan;A. De Lorenzi;C. L. Fontana;A. Muraro;T. Patton;F. Pino;G. Croci;R. Gobbo;L. Lotto;I. Mario;E. Martines;D. Rigamonti;E. Spada;M. Tardocchi;M. Zuin","doi":"10.1109/TPS.2024.3485494","DOIUrl":null,"url":null,"abstract":"The High Voltage Padova Test Facility (HVPTF) is an experimental device for investigating high voltage (HV) Direct Current insulation in a vacuum, in support of the development of the prototype of a neutral beam injector for ITER, named MITICA. Inside a high vacuum environment, two stainless steel electrodes, spaced by a few centimeters gap, can achieve a voltage difference of up to 800 kV. During the electrode conditioning process, small current bursts, known as micro-discharges (MDs) occur, accompanied by the emission of X-rays, and of an overall increase in gas emission measurement. This study focuses on the fine dynamics of the MD phenomenon measured by the current signal and by the X-ray detectors, in an attempt to provide a possible physical interpretation of this mechanism. In particular, it appears that the MD fine dynamics are related to the growing asymmetry between the MD current values collected by the anode and cathode, observed during the electrode conditioning. The role of the vacuum chamber, acting as a third electrode, is investigated by an updated toy model, which evaluates the different current contributions collected from the two polarized electrodes, particularly those generated by secondary electron (SE) emission. The ratio of anode to cathode currents computed by the toy model closely matches the experimental one. Further experimental observations supporting the hypothesis of anode gas emission and expansion are discussed. Finally, a first study about the statistical distribution of the time intervals between successive MD suggests the occurrence of almost two different trigger mechanisms, evolving during the electrode conditioning process.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4514-4519"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"X-Ray Micro-Discharges Fine Dynamics in a Vacuum High Voltage Experiment\",\"authors\":\"S. Spagnolo;L. Cordaro;N. Pilan;A. De Lorenzi;C. L. Fontana;A. Muraro;T. Patton;F. Pino;G. Croci;R. Gobbo;L. Lotto;I. Mario;E. Martines;D. Rigamonti;E. Spada;M. Tardocchi;M. Zuin\",\"doi\":\"10.1109/TPS.2024.3485494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The High Voltage Padova Test Facility (HVPTF) is an experimental device for investigating high voltage (HV) Direct Current insulation in a vacuum, in support of the development of the prototype of a neutral beam injector for ITER, named MITICA. Inside a high vacuum environment, two stainless steel electrodes, spaced by a few centimeters gap, can achieve a voltage difference of up to 800 kV. During the electrode conditioning process, small current bursts, known as micro-discharges (MDs) occur, accompanied by the emission of X-rays, and of an overall increase in gas emission measurement. This study focuses on the fine dynamics of the MD phenomenon measured by the current signal and by the X-ray detectors, in an attempt to provide a possible physical interpretation of this mechanism. In particular, it appears that the MD fine dynamics are related to the growing asymmetry between the MD current values collected by the anode and cathode, observed during the electrode conditioning. The role of the vacuum chamber, acting as a third electrode, is investigated by an updated toy model, which evaluates the different current contributions collected from the two polarized electrodes, particularly those generated by secondary electron (SE) emission. The ratio of anode to cathode currents computed by the toy model closely matches the experimental one. Further experimental observations supporting the hypothesis of anode gas emission and expansion are discussed. Finally, a first study about the statistical distribution of the time intervals between successive MD suggests the occurrence of almost two different trigger mechanisms, evolving during the electrode conditioning process.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 9\",\"pages\":\"4514-4519\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10756517/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10756517/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
X-Ray Micro-Discharges Fine Dynamics in a Vacuum High Voltage Experiment
The High Voltage Padova Test Facility (HVPTF) is an experimental device for investigating high voltage (HV) Direct Current insulation in a vacuum, in support of the development of the prototype of a neutral beam injector for ITER, named MITICA. Inside a high vacuum environment, two stainless steel electrodes, spaced by a few centimeters gap, can achieve a voltage difference of up to 800 kV. During the electrode conditioning process, small current bursts, known as micro-discharges (MDs) occur, accompanied by the emission of X-rays, and of an overall increase in gas emission measurement. This study focuses on the fine dynamics of the MD phenomenon measured by the current signal and by the X-ray detectors, in an attempt to provide a possible physical interpretation of this mechanism. In particular, it appears that the MD fine dynamics are related to the growing asymmetry between the MD current values collected by the anode and cathode, observed during the electrode conditioning. The role of the vacuum chamber, acting as a third electrode, is investigated by an updated toy model, which evaluates the different current contributions collected from the two polarized electrodes, particularly those generated by secondary electron (SE) emission. The ratio of anode to cathode currents computed by the toy model closely matches the experimental one. Further experimental observations supporting the hypothesis of anode gas emission and expansion are discussed. Finally, a first study about the statistical distribution of the time intervals between successive MD suggests the occurrence of almost two different trigger mechanisms, evolving during the electrode conditioning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信