用于模拟各种雷电间接效应的紧凑型宽范围高电压/电流脉冲发生器

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Woo-Cheol Jeong;Su-Mi Park;Hong-Je Ryoo
{"title":"用于模拟各种雷电间接效应的紧凑型宽范围高电压/电流脉冲发生器","authors":"Woo-Cheol Jeong;Su-Mi Park;Hong-Je Ryoo","doi":"10.1109/TPS.2024.3479210","DOIUrl":null,"url":null,"abstract":"In this study, a high-voltage, high-current impulse generator to evaluate the indirect effects of lightning was developed. The impulse generator was designed to meet 14 distinct conditions necessary for simulating various lightning-induced scenarios. To accommodate these diverse requirements, pulse forming networks (PFNs) incorporating passive elements and high-repetition-rate semiconductor switches for high voltage and current was designed. The major challenge addressed in this research was the design of a high-voltage capacitor charger (HVCC) that can efficiently supply the required energy under each specified condition with a single unit. Because it should rapidly and repeatedly charge capacitors that vary in size by up to 40 000 times. Therefore, unlike typical HVCC designs that are optimized based on a specific voltage or current, this study selected two output currents as part of the HVCC design process, taking into account capacitor size, charging speed, and precision, along with various output voltage conditions. The HVCC was designed based on an analysis of an inductor-capacitor–capacitor (LCC) resonant converter utilizing a trapezoidal resonant current. It was designed to maintain a consistent target output current across a wide range of output voltages and capacitor conditions, while minimizing the stress on switches. Additionally, an appropriate structural design was incorporated to handle high voltages. The HVCC has been experimentally verified to precisely charge a wide range of load capacitors (from 1 to 38 500 nF) with high voltage (up to 11 kV) at a rapid repetition rate (up to 11 kHz). Additionally, through integrated experiments with the PFN, it has been experimentally verified that the system can precisely output impulses at all targeted conditions, including high-voltage impulses of 3300 V at a rapid repetition rate of 11 kHz and high-current impulses of 5100 A.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4639-4647"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Wide Range High-Voltage/Current Impulse Generator for Simulating Various Indirect Effects of Lightning\",\"authors\":\"Woo-Cheol Jeong;Su-Mi Park;Hong-Je Ryoo\",\"doi\":\"10.1109/TPS.2024.3479210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a high-voltage, high-current impulse generator to evaluate the indirect effects of lightning was developed. The impulse generator was designed to meet 14 distinct conditions necessary for simulating various lightning-induced scenarios. To accommodate these diverse requirements, pulse forming networks (PFNs) incorporating passive elements and high-repetition-rate semiconductor switches for high voltage and current was designed. The major challenge addressed in this research was the design of a high-voltage capacitor charger (HVCC) that can efficiently supply the required energy under each specified condition with a single unit. Because it should rapidly and repeatedly charge capacitors that vary in size by up to 40 000 times. Therefore, unlike typical HVCC designs that are optimized based on a specific voltage or current, this study selected two output currents as part of the HVCC design process, taking into account capacitor size, charging speed, and precision, along with various output voltage conditions. The HVCC was designed based on an analysis of an inductor-capacitor–capacitor (LCC) resonant converter utilizing a trapezoidal resonant current. It was designed to maintain a consistent target output current across a wide range of output voltages and capacitor conditions, while minimizing the stress on switches. Additionally, an appropriate structural design was incorporated to handle high voltages. The HVCC has been experimentally verified to precisely charge a wide range of load capacitors (from 1 to 38 500 nF) with high voltage (up to 11 kV) at a rapid repetition rate (up to 11 kHz). Additionally, through integrated experiments with the PFN, it has been experimentally verified that the system can precisely output impulses at all targeted conditions, including high-voltage impulses of 3300 V at a rapid repetition rate of 11 kHz and high-current impulses of 5100 A.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 9\",\"pages\":\"4639-4647\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10734847/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10734847/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,开发了一种高压大电流脉冲发生器来评估闪电的间接影响。脉冲发生器被设计为满足模拟各种雷击情景所需的14种不同条件。为了适应这些不同的要求,设计了包含无源元件和高重复率半导体开关的脉冲形成网络(pfn),用于高电压和高电流。本研究解决的主要挑战是高压电容器充电器(HVCC)的设计,该充电器可以在每个特定条件下用单个单元有效地提供所需的能量。因为它应该快速、反复地对大小不同的电容器充电,最多可达4万次。因此,与基于特定电压或电流进行优化的典型HVCC设计不同,本研究选择了两个输出电流作为HVCC设计过程的一部分,同时考虑了电容器尺寸、充电速度和精度以及各种输出电压条件。基于对电感-电容-电容(LCC)谐振变换器梯形谐振电流的分析,设计了HVCC变换器。它的设计目的是在广泛的输出电压和电容条件下保持一致的目标输出电流,同时最大限度地减少对开关的压力。此外,还采用了适当的结构设计来处理高压。HVCC已经过实验验证,可以用高电压(高达11千伏)以快速重复率(高达11千赫)对各种负载电容器(从1到38 500纳弗)精确充电。此外,通过与PFN的集成实验,实验验证了该系统可以在所有目标条件下精确输出脉冲,包括3300 V的快速重复频率为11 kHz的高压脉冲和5100 a的大电流脉冲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact Wide Range High-Voltage/Current Impulse Generator for Simulating Various Indirect Effects of Lightning
In this study, a high-voltage, high-current impulse generator to evaluate the indirect effects of lightning was developed. The impulse generator was designed to meet 14 distinct conditions necessary for simulating various lightning-induced scenarios. To accommodate these diverse requirements, pulse forming networks (PFNs) incorporating passive elements and high-repetition-rate semiconductor switches for high voltage and current was designed. The major challenge addressed in this research was the design of a high-voltage capacitor charger (HVCC) that can efficiently supply the required energy under each specified condition with a single unit. Because it should rapidly and repeatedly charge capacitors that vary in size by up to 40 000 times. Therefore, unlike typical HVCC designs that are optimized based on a specific voltage or current, this study selected two output currents as part of the HVCC design process, taking into account capacitor size, charging speed, and precision, along with various output voltage conditions. The HVCC was designed based on an analysis of an inductor-capacitor–capacitor (LCC) resonant converter utilizing a trapezoidal resonant current. It was designed to maintain a consistent target output current across a wide range of output voltages and capacitor conditions, while minimizing the stress on switches. Additionally, an appropriate structural design was incorporated to handle high voltages. The HVCC has been experimentally verified to precisely charge a wide range of load capacitors (from 1 to 38 500 nF) with high voltage (up to 11 kV) at a rapid repetition rate (up to 11 kHz). Additionally, through integrated experiments with the PFN, it has been experimentally verified that the system can precisely output impulses at all targeted conditions, including high-voltage impulses of 3300 V at a rapid repetition rate of 11 kHz and high-current impulses of 5100 A.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信