猪角膜损伤及高频太赫兹波损伤阈值研究

IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS
Hao Lin;Pan Liu;Wenzai An;Xin Yan;Shen Wu;Ningli Wang
{"title":"猪角膜损伤及高频太赫兹波损伤阈值研究","authors":"Hao Lin;Pan Liu;Wenzai An;Xin Yan;Shen Wu;Ningli Wang","doi":"10.1109/TPS.2024.3403722","DOIUrl":null,"url":null,"abstract":"The objective was to investigate immediate ocular damage in exposed to 34.5-terahertz (THz) electromagnetic wave generated by quantum cascade laser (QCL). This research developed the damage porcine model for THz exposure, and its damage occurrence threshold values of time dimension and energy dimension were obtained. The right eyes were exposed to 34.5-THz spot from fiber, and the contralateral eyes were used as control eyes. Slit-lamp examination 5 min after THz exposure revealed a semicircular area of opacity characterized by fluorescein staining, indicating damaged corneal epithelial cells in the irradiated area and encircling by corneal edema. Hematoxylin-eosin (HE) staining suggested the irradiated corneas over 2 min exposure contained fewer epithelial cell layers with vacuolated cells, swollen endothelium, and edematous stroma, compared to contralateral corneas. In vivo evidence suggested exposure time over 6 min or energy over 40 mW leaded to full-thickness detachment of the corneal epithelium. The damage was present when the energy of THz wave was greater than 20 mW or the exposure time was longer than 2 min.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 9","pages":"4735-4738"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Porcine Corneal Injuries and Investigation of Damage Thresholds of High-Frequency Terahertz Wave\",\"authors\":\"Hao Lin;Pan Liu;Wenzai An;Xin Yan;Shen Wu;Ningli Wang\",\"doi\":\"10.1109/TPS.2024.3403722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective was to investigate immediate ocular damage in exposed to 34.5-terahertz (THz) electromagnetic wave generated by quantum cascade laser (QCL). This research developed the damage porcine model for THz exposure, and its damage occurrence threshold values of time dimension and energy dimension were obtained. The right eyes were exposed to 34.5-THz spot from fiber, and the contralateral eyes were used as control eyes. Slit-lamp examination 5 min after THz exposure revealed a semicircular area of opacity characterized by fluorescein staining, indicating damaged corneal epithelial cells in the irradiated area and encircling by corneal edema. Hematoxylin-eosin (HE) staining suggested the irradiated corneas over 2 min exposure contained fewer epithelial cell layers with vacuolated cells, swollen endothelium, and edematous stroma, compared to contralateral corneas. In vivo evidence suggested exposure time over 6 min or energy over 40 mW leaded to full-thickness detachment of the corneal epithelium. The damage was present when the energy of THz wave was greater than 20 mW or the exposure time was longer than 2 min.\",\"PeriodicalId\":450,\"journal\":{\"name\":\"IEEE Transactions on Plasma Science\",\"volume\":\"52 9\",\"pages\":\"4735-4738\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Plasma Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10752900/\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10752900/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Porcine Corneal Injuries and Investigation of Damage Thresholds of High-Frequency Terahertz Wave
The objective was to investigate immediate ocular damage in exposed to 34.5-terahertz (THz) electromagnetic wave generated by quantum cascade laser (QCL). This research developed the damage porcine model for THz exposure, and its damage occurrence threshold values of time dimension and energy dimension were obtained. The right eyes were exposed to 34.5-THz spot from fiber, and the contralateral eyes were used as control eyes. Slit-lamp examination 5 min after THz exposure revealed a semicircular area of opacity characterized by fluorescein staining, indicating damaged corneal epithelial cells in the irradiated area and encircling by corneal edema. Hematoxylin-eosin (HE) staining suggested the irradiated corneas over 2 min exposure contained fewer epithelial cell layers with vacuolated cells, swollen endothelium, and edematous stroma, compared to contralateral corneas. In vivo evidence suggested exposure time over 6 min or energy over 40 mW leaded to full-thickness detachment of the corneal epithelium. The damage was present when the energy of THz wave was greater than 20 mW or the exposure time was longer than 2 min.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Plasma Science
IEEE Transactions on Plasma Science 物理-物理:流体与等离子体
CiteScore
3.00
自引率
20.00%
发文量
538
审稿时长
3.8 months
期刊介绍: The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信