Shuaihao Liu, Guoguang Wang, Ziao Xing, Hongyi Xue, Yana Wang, Haixia Wang, Xu Dong, Haiyue Chen, Yu Liu
{"title":"稳定同位素和多组学研究揭示小麦(Triticum aestivum L.)对Tris(2-氯乙基)磷酸的吸收、转运和转化机制","authors":"Shuaihao Liu, Guoguang Wang, Ziao Xing, Hongyi Xue, Yana Wang, Haixia Wang, Xu Dong, Haiyue Chen, Yu Liu","doi":"10.1021/acs.jafc.4c08393","DOIUrl":null,"url":null,"abstract":"Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (<i>Triticum aestivum</i> L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable Isotope and Multiomics Reveal Uptake, Translocation, and Transformation Mechanisms of Tris(2-chloroethyl) Phosphate in Wheat (Triticum aestivum L.)\",\"authors\":\"Shuaihao Liu, Guoguang Wang, Ziao Xing, Hongyi Xue, Yana Wang, Haixia Wang, Xu Dong, Haiyue Chen, Yu Liu\",\"doi\":\"10.1021/acs.jafc.4c08393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (<i>Triticum aestivum</i> L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c08393\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c08393","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stable Isotope and Multiomics Reveal Uptake, Translocation, and Transformation Mechanisms of Tris(2-chloroethyl) Phosphate in Wheat (Triticum aestivum L.)
Uptake, translocation, and transformation mechanisms of tris(2-chloroethyl) phosphate (TCEP) in hydroponic wheat (Triticum aestivum L.) were systematically investigated using compound-specific stable isotope and multiomics analyses in this study. Results showed that TCEP was quickly adsorbed on root epidermis and then absorbed in roots via water and anion channels as well as an active process dependent on energy. Active process and anion channel preferentially translocated TCEP-containing light carbon isotopes and dominated the transmembrane transport of TCEP to enter vascular bundle. Transcriptomic and metabolomic analyses indicated gene-encoding ATP-binding cassette (ABC) transporters and purple acid phosphatases (PAPs) and glutathione S-transferases (GSTs) involved in TCEP transport and transformation, respectively. Molecular docking simulations showed that TCEP bound to the hydrophilic cavity of ABC transporter/PAP and hydrophobic cavity of GST, and hydrogen bonding was the important driving force. The results of this study offered insights for future effective mitigation of TCEP risk in edible plants.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.