一种具有模块数自适应的模块化软机器人新型精确BiLSTM组态控制器。

Zixi Chen, Matteo Bernabei, Vanessa Mainardi, Xuyang Ren, Gastone Ciuti, Cesare Stefanini
{"title":"一种具有模块数自适应的模块化软机器人新型精确BiLSTM组态控制器。","authors":"Zixi Chen, Matteo Bernabei, Vanessa Mainardi, Xuyang Ren, Gastone Ciuti, Cesare Stefanini","doi":"10.1089/soro.2024.0015","DOIUrl":null,"url":null,"abstract":"<p><p>Modular soft robots (MSRs) exhibit greater potential for sophisticated tasks compared with single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this article, we introduce a data collection strategy tailored for MSR and a bidirectional long short-term memory (biLSTM) configuration controller capable of adapting to varying module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches. Experimental results have demonstrated that MSRs can explore a larger space, thanks to our data collection method, and our controller can be leveraged despite an increase or decrease in module number. By leveraging the biLSTM, we aim to mimic the physical structure of MSRs, allowing the controller to adapt to module number change. Future work may include a planning method that bridges the task, configuration, and actuation spaces. We may also integrate online components into this controller.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel and Accurate BiLSTM Configuration Controller for Modular Soft Robots with Module Number Adaptability.\",\"authors\":\"Zixi Chen, Matteo Bernabei, Vanessa Mainardi, Xuyang Ren, Gastone Ciuti, Cesare Stefanini\",\"doi\":\"10.1089/soro.2024.0015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Modular soft robots (MSRs) exhibit greater potential for sophisticated tasks compared with single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this article, we introduce a data collection strategy tailored for MSR and a bidirectional long short-term memory (biLSTM) configuration controller capable of adapting to varying module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches. Experimental results have demonstrated that MSRs can explore a larger space, thanks to our data collection method, and our controller can be leveraged despite an increase or decrease in module number. By leveraging the biLSTM, we aim to mimic the physical structure of MSRs, allowing the controller to adapt to module number change. Future work may include a planning method that bridges the task, configuration, and actuation spaces. We may also integrate online components into this controller.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与单模组机器人相比,模块化软机器人(MSRs)在复杂任务中表现出更大的潜力。然而,模块化结构增加了精确控制的复杂性,需要针对模块化机器人制定专门的控制策略。在本文中,我们介绍了为MSR量身定制的数据收集策略和能够适应不同模块数量的双向长短期记忆(biLSTM)配置控制器。仿真缆索驱动机器人和真实的气动机器人已经在实验中验证了所提出的方法。实验结果表明,由于我们的数据收集方法,msr可以探索更大的空间,并且我们的控制器可以在模块数量增加或减少的情况下发挥作用。通过利用biLSTM,我们的目标是模拟msr的物理结构,允许控制器适应模块数量的变化。未来的工作可能包括一种规划方法,将任务、配置和驱动空间连接起来。我们也可以将在线组件集成到控制器中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel and Accurate BiLSTM Configuration Controller for Modular Soft Robots with Module Number Adaptability.

Modular soft robots (MSRs) exhibit greater potential for sophisticated tasks compared with single-module robots. However, the modular structure incurs the complexity of accurate control and necessitates a control strategy specifically for modular robots. In this article, we introduce a data collection strategy tailored for MSR and a bidirectional long short-term memory (biLSTM) configuration controller capable of adapting to varying module numbers. Simulation cable-driven robots and real pneumatic robots have been included in experiments to validate the proposed approaches. Experimental results have demonstrated that MSRs can explore a larger space, thanks to our data collection method, and our controller can be leveraged despite an increase or decrease in module number. By leveraging the biLSTM, we aim to mimic the physical structure of MSRs, allowing the controller to adapt to module number change. Future work may include a planning method that bridges the task, configuration, and actuation spaces. We may also integrate online components into this controller.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信