Chien-Hung Lin, Wen-Sheng Liu, Chuan Wan, Hsin-Hui Wang
{"title":"gpx4调控的嗜铁应激促进PM2.5诱导的肾小管细胞上皮向间质转化。","authors":"Chien-Hung Lin, Wen-Sheng Liu, Chuan Wan, Hsin-Hui Wang","doi":"10.1016/j.taap.2024.117184","DOIUrl":null,"url":null,"abstract":"<p><p>Increasing evidence links exposure to fine particulate matter (PM2.5) with an elevated risk of kidney disease. In this study, we investigated the effect of PM2.5 exposure on human proximal tubular epithelial (HK-2) cells and found that it elevated ferroptotic stress markers, including increased iron, reactive oxygen species (ROS), and malondialdehyde (MDA), along with reducing glutathione (GSH) levels. PM2.5 promotes the epithelial-to-mesenchymal transition (EMT) in these cells, which is associated with the loss of epithelial morphology, lowered expression of E-cadherin, and elevated expression of α-smooth muscle actin (α-SMA). Notably, a reduction in PM2.5-induced EMT characteristics was observed using either a ferroptosis-specific inhibitor (Fer-1) or a mitochondrial ROS scavenger (Mito-Tempo). Moreover, Fer-1 effectively counteracted ferroptotic stress and restored glutathione peroxidase 4 (GPX4) expression in PM2.5-exposed cells, which may explain its efficacy in inhibiting EMT induced by PM2.5. In contrast, GPX4 knockdown exacerbated EMT features in PM2.5-treated cells. Further studies showed that GPX4 overexpression alleviated EMT markers in mouse tubular cells following PM2.5 exposure, indicating the role of GPX4 in reducing ferroptotic stress and may prevent tubular injury caused by PM2.5 exposure. Our study highlights that PM2.5 may induce GPX4-regulated ferroptotic stress in tubular cells, potentially triggering the EMT process and contributing to kidney injury.</p>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":" ","pages":"117184"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induction of GPX4-regulated ferroptotic stress promotes epithelial-to-mesenchymal transition in renal tubule cells induced by PM2.5.\",\"authors\":\"Chien-Hung Lin, Wen-Sheng Liu, Chuan Wan, Hsin-Hui Wang\",\"doi\":\"10.1016/j.taap.2024.117184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Increasing evidence links exposure to fine particulate matter (PM2.5) with an elevated risk of kidney disease. In this study, we investigated the effect of PM2.5 exposure on human proximal tubular epithelial (HK-2) cells and found that it elevated ferroptotic stress markers, including increased iron, reactive oxygen species (ROS), and malondialdehyde (MDA), along with reducing glutathione (GSH) levels. PM2.5 promotes the epithelial-to-mesenchymal transition (EMT) in these cells, which is associated with the loss of epithelial morphology, lowered expression of E-cadherin, and elevated expression of α-smooth muscle actin (α-SMA). Notably, a reduction in PM2.5-induced EMT characteristics was observed using either a ferroptosis-specific inhibitor (Fer-1) or a mitochondrial ROS scavenger (Mito-Tempo). Moreover, Fer-1 effectively counteracted ferroptotic stress and restored glutathione peroxidase 4 (GPX4) expression in PM2.5-exposed cells, which may explain its efficacy in inhibiting EMT induced by PM2.5. In contrast, GPX4 knockdown exacerbated EMT features in PM2.5-treated cells. Further studies showed that GPX4 overexpression alleviated EMT markers in mouse tubular cells following PM2.5 exposure, indicating the role of GPX4 in reducing ferroptotic stress and may prevent tubular injury caused by PM2.5 exposure. Our study highlights that PM2.5 may induce GPX4-regulated ferroptotic stress in tubular cells, potentially triggering the EMT process and contributing to kidney injury.</p>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\" \",\"pages\":\"117184\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.taap.2024.117184\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.taap.2024.117184","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Induction of GPX4-regulated ferroptotic stress promotes epithelial-to-mesenchymal transition in renal tubule cells induced by PM2.5.
Increasing evidence links exposure to fine particulate matter (PM2.5) with an elevated risk of kidney disease. In this study, we investigated the effect of PM2.5 exposure on human proximal tubular epithelial (HK-2) cells and found that it elevated ferroptotic stress markers, including increased iron, reactive oxygen species (ROS), and malondialdehyde (MDA), along with reducing glutathione (GSH) levels. PM2.5 promotes the epithelial-to-mesenchymal transition (EMT) in these cells, which is associated with the loss of epithelial morphology, lowered expression of E-cadherin, and elevated expression of α-smooth muscle actin (α-SMA). Notably, a reduction in PM2.5-induced EMT characteristics was observed using either a ferroptosis-specific inhibitor (Fer-1) or a mitochondrial ROS scavenger (Mito-Tempo). Moreover, Fer-1 effectively counteracted ferroptotic stress and restored glutathione peroxidase 4 (GPX4) expression in PM2.5-exposed cells, which may explain its efficacy in inhibiting EMT induced by PM2.5. In contrast, GPX4 knockdown exacerbated EMT features in PM2.5-treated cells. Further studies showed that GPX4 overexpression alleviated EMT markers in mouse tubular cells following PM2.5 exposure, indicating the role of GPX4 in reducing ferroptotic stress and may prevent tubular injury caused by PM2.5 exposure. Our study highlights that PM2.5 may induce GPX4-regulated ferroptotic stress in tubular cells, potentially triggering the EMT process and contributing to kidney injury.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.