300mm晶圆上的嵌入式硅锗热电器件

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
C. Schwinge;R. Hoffmann;K. Biedermann;M. Czernohorsky;J. Kannan;M. Rudolph;F. Mende;M. Wagner-Reetz;G. Gerlach;W. Weinreich
{"title":"300mm晶圆上的嵌入式硅锗热电器件","authors":"C. Schwinge;R. Hoffmann;K. Biedermann;M. Czernohorsky;J. Kannan;M. Rudolph;F. Mende;M. Wagner-Reetz;G. Gerlach;W. Weinreich","doi":"10.1109/TED.2024.3482259","DOIUrl":null,"url":null,"abstract":"Scalability and the absence of moving components are excellent advantages for integrated thermoelectric (TE) devices in microelectronic applications. Both TE coolers (TECs) and TE generators (TEGs) could enhance computer chip efficiency and reliability. We show the fabrication of CMOS-compatible silicon-germanium (SiGe)-based TEC and TEG multistage structures for lateral temperature gradients with microelectronic manufacturing processes on 300-mm wafers. The smallest structures have a size of 1500 \n<inline-formula> <tex-math>$\\times $ </tex-math></inline-formula>\n 500 nm and achieved a cooling temperature difference of around 0.13 K. The TEGs of equal dimensions reached a maximum voltage factor of 545 mV\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\nmm\n<inline-formula> <tex-math>$^{-{2}} \\cdot $ </tex-math></inline-formula>\nK\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\n and a specific power generation factor of 2.1 nW\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\nmm\n<inline-formula> <tex-math>$^{-{2}} \\cdot $ </tex-math></inline-formula>\nK\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n near room temperature. Three different n-type SiGe materials were compared and examined regarding their TE properties. To address the challenge of contacting the TE element, we have captured and analyzed transmission electron microscopy (TEM) images for defect identification.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 12","pages":"7794-7801"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750481","citationCount":"0","resultStr":"{\"title\":\"Embedded Silicon-Germanium-Based Thermoelectric Devices on 300-mm Wafer\",\"authors\":\"C. Schwinge;R. Hoffmann;K. Biedermann;M. Czernohorsky;J. Kannan;M. Rudolph;F. Mende;M. Wagner-Reetz;G. Gerlach;W. Weinreich\",\"doi\":\"10.1109/TED.2024.3482259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scalability and the absence of moving components are excellent advantages for integrated thermoelectric (TE) devices in microelectronic applications. Both TE coolers (TECs) and TE generators (TEGs) could enhance computer chip efficiency and reliability. We show the fabrication of CMOS-compatible silicon-germanium (SiGe)-based TEC and TEG multistage structures for lateral temperature gradients with microelectronic manufacturing processes on 300-mm wafers. The smallest structures have a size of 1500 \\n<inline-formula> <tex-math>$\\\\times $ </tex-math></inline-formula>\\n 500 nm and achieved a cooling temperature difference of around 0.13 K. The TEGs of equal dimensions reached a maximum voltage factor of 545 mV\\n<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>\\nmm\\n<inline-formula> <tex-math>$^{-{2}} \\\\cdot $ </tex-math></inline-formula>\\nK\\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\\n and a specific power generation factor of 2.1 nW\\n<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>\\nmm\\n<inline-formula> <tex-math>$^{-{2}} \\\\cdot $ </tex-math></inline-formula>\\nK\\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\\n near room temperature. Three different n-type SiGe materials were compared and examined regarding their TE properties. To address the challenge of contacting the TE element, we have captured and analyzed transmission electron microscopy (TEM) images for defect identification.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"71 12\",\"pages\":\"7794-7801\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10750481\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750481/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10750481/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

可扩展性和无运动元件是集成热电(TE)器件在微电子应用中的优异优势。TE冷却器(tec)和TE发生器(teg)都可以提高计算机芯片的效率和可靠性。我们展示了在300毫米晶圆上采用微电子制造工艺制造的用于横向温度梯度的cmos兼容硅锗(SiGe)基TEC和TEG多级结构。最小的结构尺寸为1500 × 500 nm,冷却温差约为0.13 K。等维teg在室温下的最大电压因子为545 mV $\cdot $ mm $^{-{2}} \cdot $ K $^{-{1}}$,比功率因子为2.1 nW $\cdot $ mm $^{-{2}} \cdot $ K $^{-{2}}$。对三种不同的n型SiGe材料的TE性能进行了比较和研究。为了解决接触TE元素的挑战,我们捕获并分析了透射电子显微镜(TEM)图像以进行缺陷识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Silicon-Germanium-Based Thermoelectric Devices on 300-mm Wafer
Scalability and the absence of moving components are excellent advantages for integrated thermoelectric (TE) devices in microelectronic applications. Both TE coolers (TECs) and TE generators (TEGs) could enhance computer chip efficiency and reliability. We show the fabrication of CMOS-compatible silicon-germanium (SiGe)-based TEC and TEG multistage structures for lateral temperature gradients with microelectronic manufacturing processes on 300-mm wafers. The smallest structures have a size of 1500 $\times $ 500 nm and achieved a cooling temperature difference of around 0.13 K. The TEGs of equal dimensions reached a maximum voltage factor of 545 mV $\cdot $ mm $^{-{2}} \cdot $ K $^{-{1}}$ and a specific power generation factor of 2.1 nW $\cdot $ mm $^{-{2}} \cdot $ K $^{-{2}}$ near room temperature. Three different n-type SiGe materials were compared and examined regarding their TE properties. To address the challenge of contacting the TE element, we have captured and analyzed transmission electron microscopy (TEM) images for defect identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信