{"title":"工业木质素分子间力非均匀性的新认识:单分散木质素胶体球合成和全生物质光子材料制备","authors":"Qiyu Liu, Jiayue Lu, Lili He, Jingyu Wang, Haiping Guo, Junhao Long, Liheng Chen, Xueqing Qiu","doi":"10.1021/acs.jafc.4c07164","DOIUrl":null,"url":null,"abstract":"Industrial lignin is an underutilized resource from the pulping industry due to its high heterogeneity. The transformation of industrial lignin into monodispersed lignin colloidal spheres (LCSs) for the preparation of advanced biomass photonic materials is particularly appealing, because of their unique biocompatibility. However, the LCSs synthesized from industrial lignin generally show a wide size distribution and thus limit this specific application. To address the issue, selective functionalization was carried out to convert phenolic and aliphatic −OH groups into ester groups, decreasing the LCS size distribution to a monodispersing degree. Simulation analysis revealed that the functionalization had narrowed the difference of C–O linkage electron cloud distribution and led to a lignin polarity decrease. Additionally, atomic force microscopy (AFM) quantification of lignin proved a force distribution index (FDI) decrease from 0.38 to 0.11, which was consistent with the LCS polymer dispersity index (PDI) decrease from 0.182 to 0.05. The photonic materials can be readily prepared from monodispersed LCSs with the color precisely adjusted by controlling LCS particle sizes.","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"7 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Insight into Industrial Lignin Intermolecular Force Heterogeneity Mitigation: Monodispersed Lignin Colloidal Sphere Synthesis and Full Biomass Photonic Material Preparation\",\"authors\":\"Qiyu Liu, Jiayue Lu, Lili He, Jingyu Wang, Haiping Guo, Junhao Long, Liheng Chen, Xueqing Qiu\",\"doi\":\"10.1021/acs.jafc.4c07164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial lignin is an underutilized resource from the pulping industry due to its high heterogeneity. The transformation of industrial lignin into monodispersed lignin colloidal spheres (LCSs) for the preparation of advanced biomass photonic materials is particularly appealing, because of their unique biocompatibility. However, the LCSs synthesized from industrial lignin generally show a wide size distribution and thus limit this specific application. To address the issue, selective functionalization was carried out to convert phenolic and aliphatic −OH groups into ester groups, decreasing the LCS size distribution to a monodispersing degree. Simulation analysis revealed that the functionalization had narrowed the difference of C–O linkage electron cloud distribution and led to a lignin polarity decrease. Additionally, atomic force microscopy (AFM) quantification of lignin proved a force distribution index (FDI) decrease from 0.38 to 0.11, which was consistent with the LCS polymer dispersity index (PDI) decrease from 0.182 to 0.05. The photonic materials can be readily prepared from monodispersed LCSs with the color precisely adjusted by controlling LCS particle sizes.\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jafc.4c07164\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1021/acs.jafc.4c07164","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
New Insight into Industrial Lignin Intermolecular Force Heterogeneity Mitigation: Monodispersed Lignin Colloidal Sphere Synthesis and Full Biomass Photonic Material Preparation
Industrial lignin is an underutilized resource from the pulping industry due to its high heterogeneity. The transformation of industrial lignin into monodispersed lignin colloidal spheres (LCSs) for the preparation of advanced biomass photonic materials is particularly appealing, because of their unique biocompatibility. However, the LCSs synthesized from industrial lignin generally show a wide size distribution and thus limit this specific application. To address the issue, selective functionalization was carried out to convert phenolic and aliphatic −OH groups into ester groups, decreasing the LCS size distribution to a monodispersing degree. Simulation analysis revealed that the functionalization had narrowed the difference of C–O linkage electron cloud distribution and led to a lignin polarity decrease. Additionally, atomic force microscopy (AFM) quantification of lignin proved a force distribution index (FDI) decrease from 0.38 to 0.11, which was consistent with the LCS polymer dispersity index (PDI) decrease from 0.182 to 0.05. The photonic materials can be readily prepared from monodispersed LCSs with the color precisely adjusted by controlling LCS particle sizes.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.