Huanhuan Li, Menghan Wu, Jinming Wu, Jing Wan, Yongfeng He, Yifan Ding, Jun Liu, Liangxia Su
{"title":"饲粮中添加氧化锌纳米颗粒对珍稀米诺鱼生长性能、组织锌含量及免疫反应的影响","authors":"Huanhuan Li, Menghan Wu, Jinming Wu, Jing Wan, Yongfeng He, Yifan Ding, Jun Liu, Liangxia Su","doi":"10.1155/anu/9553278","DOIUrl":null,"url":null,"abstract":"<div>\n <p>In recent years, zinc oxide nanoparticles (ZnO NPs) have gained attention as feed additives due to their high bioavailability. However, research on their impact on fish growth and health is limited. To investigate the influences of dietary addition of ZnO NPs on growth performance and immune function of rare minnow, rare minnows were fed diets with different ZnO NPs content. Growth analysis showed that ZnO NPs had a negative effect on the weight of rare minnow, decreasing and then increasing condition factors (CFs) and specific growth rate. Additionally, the accumulated zinc (Zn) level was significantly higher (<i>p</i> < 0.05), and the liver injury index was significantly higher (<i>p</i> < 0.05) in the dietary ZnO NPs group compared to the control group. The number of erythrocytes and leukocytes in blood samples increased and then decreased after treatment with ZnO NPs. It was further found that ZnO NPs as a dietary supplement significantly increased the Zn content and markedly repressed the expression of growth-related genes after 60 days of accumulation in muscle tissues, and accumulation in liver tissues for 60 days significantly enhanced the expression of immune modulation–related genes expression (<i>p</i> < 0.05). The findings suggested that short-term supplementation of ZnO NPs could positively affect fish growth and immune function. However, prolonged supplementation of dietary ZnO NPs resulted in reduced body weight and compromised immune function owing to the buildup of Zn in different tissues.</p>\n </div>","PeriodicalId":8225,"journal":{"name":"Aquaculture Nutrition","volume":"2024 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/9553278","citationCount":"0","resultStr":"{\"title\":\"The Effect of Dietary Zinc Oxide Nanoparticles on Growth Performance, Zinc in Tissues, and Immune Response in the Rare Minnow (Gobiocypris rarus)\",\"authors\":\"Huanhuan Li, Menghan Wu, Jinming Wu, Jing Wan, Yongfeng He, Yifan Ding, Jun Liu, Liangxia Su\",\"doi\":\"10.1155/anu/9553278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>In recent years, zinc oxide nanoparticles (ZnO NPs) have gained attention as feed additives due to their high bioavailability. However, research on their impact on fish growth and health is limited. To investigate the influences of dietary addition of ZnO NPs on growth performance and immune function of rare minnow, rare minnows were fed diets with different ZnO NPs content. Growth analysis showed that ZnO NPs had a negative effect on the weight of rare minnow, decreasing and then increasing condition factors (CFs) and specific growth rate. Additionally, the accumulated zinc (Zn) level was significantly higher (<i>p</i> < 0.05), and the liver injury index was significantly higher (<i>p</i> < 0.05) in the dietary ZnO NPs group compared to the control group. The number of erythrocytes and leukocytes in blood samples increased and then decreased after treatment with ZnO NPs. It was further found that ZnO NPs as a dietary supplement significantly increased the Zn content and markedly repressed the expression of growth-related genes after 60 days of accumulation in muscle tissues, and accumulation in liver tissues for 60 days significantly enhanced the expression of immune modulation–related genes expression (<i>p</i> < 0.05). The findings suggested that short-term supplementation of ZnO NPs could positively affect fish growth and immune function. However, prolonged supplementation of dietary ZnO NPs resulted in reduced body weight and compromised immune function owing to the buildup of Zn in different tissues.</p>\\n </div>\",\"PeriodicalId\":8225,\"journal\":{\"name\":\"Aquaculture Nutrition\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/anu/9553278\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquaculture Nutrition\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/anu/9553278\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquaculture Nutrition","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/anu/9553278","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
The Effect of Dietary Zinc Oxide Nanoparticles on Growth Performance, Zinc in Tissues, and Immune Response in the Rare Minnow (Gobiocypris rarus)
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained attention as feed additives due to their high bioavailability. However, research on their impact on fish growth and health is limited. To investigate the influences of dietary addition of ZnO NPs on growth performance and immune function of rare minnow, rare minnows were fed diets with different ZnO NPs content. Growth analysis showed that ZnO NPs had a negative effect on the weight of rare minnow, decreasing and then increasing condition factors (CFs) and specific growth rate. Additionally, the accumulated zinc (Zn) level was significantly higher (p < 0.05), and the liver injury index was significantly higher (p < 0.05) in the dietary ZnO NPs group compared to the control group. The number of erythrocytes and leukocytes in blood samples increased and then decreased after treatment with ZnO NPs. It was further found that ZnO NPs as a dietary supplement significantly increased the Zn content and markedly repressed the expression of growth-related genes after 60 days of accumulation in muscle tissues, and accumulation in liver tissues for 60 days significantly enhanced the expression of immune modulation–related genes expression (p < 0.05). The findings suggested that short-term supplementation of ZnO NPs could positively affect fish growth and immune function. However, prolonged supplementation of dietary ZnO NPs resulted in reduced body weight and compromised immune function owing to the buildup of Zn in different tissues.
期刊介绍:
Aquaculture Nutrition is published on a bimonthly basis, providing a global perspective on the nutrition of all cultivated aquatic animals. Topics range from extensive aquaculture to laboratory studies of nutritional biochemistry and physiology. The Journal specifically seeks to improve our understanding of the nutrition of aquacultured species through the provision of an international forum for the presentation of reviews and original research papers.
Aquaculture Nutrition publishes papers which strive to:
increase basic knowledge of the nutrition of aquacultured species and elevate the standards of published aquaculture nutrition research.
improve understanding of the relationships between nutrition and the environmental impact of aquaculture.
increase understanding of the relationships between nutrition and processing, product quality, and the consumer.
help aquaculturalists improve their management and understanding of the complex discipline of nutrition.
help the aquaculture feed industry by providing a focus for relevant information, techniques, tools and concepts.