{"title":"色氨酸代谢调节益生菌通过保护肠道屏障完整性和促进结肠尿酸排泄来缓解高尿酸血症","authors":"Qianxu Wang, Jiarui Liang, Qianhui Zou, Wenxiu Wang, Guiming Yan, Rui Guo, Tian Yuan, Yutang Wang*, Xuebo Liu and Zhigang Liu*, ","doi":"10.1021/acs.jafc.4c0771610.1021/acs.jafc.4c07716","DOIUrl":null,"url":null,"abstract":"<p >The balance of gut microbiota affects uric acid synthesis and excretion, influencing the development of hyperuricemia. This study aimed to investigate the effects and mechanisms of probiotics on hyperuricemia and adenine- and potassium oxonate-induced colonic damage. After two months of gavage at 10<sup>9</sup> CFU/day, the probiotic strains <i>Lactobacillus rhamnosus</i> UA260 and <i>Lactobacillus plantarum</i> YU28, identified through <i>in vitro</i> screening, significantly reduced serum uric acid levels in hyperuricemia mice from 109.71 ± 56.33 to 38.76 ± 15.06 and 33.22 ± 6.91 μmol/L, respectively. These strains attenuated inflammatory, repaired gut barrier damage, and enhanced colonic uric acid transporter function, thereby promoting uric acid excretion. Furthermore, the probiotics significantly reshaped gut microbiota by increasing the abundance of beneficial bacteria, including <i>Lactobacillus</i> and <i>Coprococcus</i>, while modulating tryptophan, purine, and riboflavin metabolism. Changes in tryptophan metabolites, specifically indole-3-propionic acid and indole-3-acetic acid, were correlated with xanthine oxidase activity, colonic injury, and the expression of the uric acid transporter protein ABCG2 during treatment. Probiotics intervention activated aryl hydrocarbon receptor pathways. These findings suggest that probiotics alleviate hyperuricemia and colonic inflammatory by regulating gut microbiota composition and tryptophan microbial metabolite pathways. Probiotics that modulate tryptophan microbial metabolism may provide a potential strategy for treating or preventing hyperuricemia.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"72 48","pages":"26746–26761 26746–26761"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tryptophan Metabolism-Regulating Probiotics Alleviate Hyperuricemia by Protecting the Gut Barrier Integrity and Enhancing Colonic Uric Acid Excretion\",\"authors\":\"Qianxu Wang, Jiarui Liang, Qianhui Zou, Wenxiu Wang, Guiming Yan, Rui Guo, Tian Yuan, Yutang Wang*, Xuebo Liu and Zhigang Liu*, \",\"doi\":\"10.1021/acs.jafc.4c0771610.1021/acs.jafc.4c07716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The balance of gut microbiota affects uric acid synthesis and excretion, influencing the development of hyperuricemia. This study aimed to investigate the effects and mechanisms of probiotics on hyperuricemia and adenine- and potassium oxonate-induced colonic damage. After two months of gavage at 10<sup>9</sup> CFU/day, the probiotic strains <i>Lactobacillus rhamnosus</i> UA260 and <i>Lactobacillus plantarum</i> YU28, identified through <i>in vitro</i> screening, significantly reduced serum uric acid levels in hyperuricemia mice from 109.71 ± 56.33 to 38.76 ± 15.06 and 33.22 ± 6.91 μmol/L, respectively. These strains attenuated inflammatory, repaired gut barrier damage, and enhanced colonic uric acid transporter function, thereby promoting uric acid excretion. Furthermore, the probiotics significantly reshaped gut microbiota by increasing the abundance of beneficial bacteria, including <i>Lactobacillus</i> and <i>Coprococcus</i>, while modulating tryptophan, purine, and riboflavin metabolism. Changes in tryptophan metabolites, specifically indole-3-propionic acid and indole-3-acetic acid, were correlated with xanthine oxidase activity, colonic injury, and the expression of the uric acid transporter protein ABCG2 during treatment. Probiotics intervention activated aryl hydrocarbon receptor pathways. These findings suggest that probiotics alleviate hyperuricemia and colonic inflammatory by regulating gut microbiota composition and tryptophan microbial metabolite pathways. Probiotics that modulate tryptophan microbial metabolism may provide a potential strategy for treating or preventing hyperuricemia.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"72 48\",\"pages\":\"26746–26761 26746–26761\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.4c07716\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.4c07716","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Tryptophan Metabolism-Regulating Probiotics Alleviate Hyperuricemia by Protecting the Gut Barrier Integrity and Enhancing Colonic Uric Acid Excretion
The balance of gut microbiota affects uric acid synthesis and excretion, influencing the development of hyperuricemia. This study aimed to investigate the effects and mechanisms of probiotics on hyperuricemia and adenine- and potassium oxonate-induced colonic damage. After two months of gavage at 109 CFU/day, the probiotic strains Lactobacillus rhamnosus UA260 and Lactobacillus plantarum YU28, identified through in vitro screening, significantly reduced serum uric acid levels in hyperuricemia mice from 109.71 ± 56.33 to 38.76 ± 15.06 and 33.22 ± 6.91 μmol/L, respectively. These strains attenuated inflammatory, repaired gut barrier damage, and enhanced colonic uric acid transporter function, thereby promoting uric acid excretion. Furthermore, the probiotics significantly reshaped gut microbiota by increasing the abundance of beneficial bacteria, including Lactobacillus and Coprococcus, while modulating tryptophan, purine, and riboflavin metabolism. Changes in tryptophan metabolites, specifically indole-3-propionic acid and indole-3-acetic acid, were correlated with xanthine oxidase activity, colonic injury, and the expression of the uric acid transporter protein ABCG2 during treatment. Probiotics intervention activated aryl hydrocarbon receptor pathways. These findings suggest that probiotics alleviate hyperuricemia and colonic inflammatory by regulating gut microbiota composition and tryptophan microbial metabolite pathways. Probiotics that modulate tryptophan microbial metabolism may provide a potential strategy for treating or preventing hyperuricemia.
期刊介绍:
The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.