{"title":"颅运动神经元输入特异性由活动细化。","authors":"Kimberly L McArthur","doi":"10.1016/j.tins.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>A recent study by Kaneko and colleagues provides evidence that developing cranial motor neurons in larval zebrafish refine their input specificity over time, using an activity-dependent mechanism that may depend, in part, on adaptive dendrite extension. These findings illuminate the mechanism by which spatially overlapping motor pools are recruited into distinct motor circuits.</p>","PeriodicalId":23325,"journal":{"name":"Trends in Neurosciences","volume":" ","pages":"5-6"},"PeriodicalIF":14.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cranial motor neuron input specificity refined by activity.\",\"authors\":\"Kimberly L McArthur\",\"doi\":\"10.1016/j.tins.2024.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A recent study by Kaneko and colleagues provides evidence that developing cranial motor neurons in larval zebrafish refine their input specificity over time, using an activity-dependent mechanism that may depend, in part, on adaptive dendrite extension. These findings illuminate the mechanism by which spatially overlapping motor pools are recruited into distinct motor circuits.</p>\",\"PeriodicalId\":23325,\"journal\":{\"name\":\"Trends in Neurosciences\",\"volume\":\" \",\"pages\":\"5-6\"},\"PeriodicalIF\":14.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Neurosciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tins.2024.11.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Neurosciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tins.2024.11.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Cranial motor neuron input specificity refined by activity.
A recent study by Kaneko and colleagues provides evidence that developing cranial motor neurons in larval zebrafish refine their input specificity over time, using an activity-dependent mechanism that may depend, in part, on adaptive dendrite extension. These findings illuminate the mechanism by which spatially overlapping motor pools are recruited into distinct motor circuits.
期刊介绍:
For over four decades, Trends in Neurosciences (TINS) has been a prominent source of inspiring reviews and commentaries across all disciplines of neuroscience. TINS is a monthly, peer-reviewed journal, and its articles are curated by the Editor and authored by leading researchers in their respective fields. The journal communicates exciting advances in brain research, serves as a voice for the global neuroscience community, and highlights the contribution of neuroscientific research to medicine and society.