复辛李群的强实伴随轨道

IF 1 3区 数学 Q1 MATHEMATICS
Tejbir Lohan , Chandan Maity
{"title":"复辛李群的强实伴随轨道","authors":"Tejbir Lohan ,&nbsp;Chandan Maity","doi":"10.1016/j.laa.2024.11.015","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the adjoint action of the symplectic Lie group <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> on its Lie algebra <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. An element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> is called <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real if <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo><mi>X</mi></math></span> for some <span><math><mi>g</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. Moreover, if <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>h</mi><mo>)</mo><mi>X</mi></math></span> for some involution <span><math><mi>h</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, then <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> is called strongly <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real. In this paper, we prove that for every element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, there exists a skew-involution <span><math><mi>g</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo><mi>X</mi></math></span>. Furthermore, we classify the strongly <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real elements in <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. We also classify skew-Hamiltonian matrices that are similar to their negatives via a symplectic involution.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"706 ","pages":"Pages 144-156"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strongly real adjoint orbits of complex symplectic Lie group\",\"authors\":\"Tejbir Lohan ,&nbsp;Chandan Maity\",\"doi\":\"10.1016/j.laa.2024.11.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the adjoint action of the symplectic Lie group <span><math><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> on its Lie algebra <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. An element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> is called <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real if <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo><mi>X</mi></math></span> for some <span><math><mi>g</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. Moreover, if <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>h</mi><mo>)</mo><mi>X</mi></math></span> for some involution <span><math><mi>h</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, then <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> is called strongly <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real. In this paper, we prove that for every element <span><math><mi>X</mi><mo>∈</mo><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>, there exists a skew-involution <span><math><mi>g</mi><mo>∈</mo><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> such that <span><math><mo>−</mo><mi>X</mi><mo>=</mo><mrow><mi>Ad</mi></mrow><mo>(</mo><mi>g</mi><mo>)</mo><mi>X</mi></math></span>. Furthermore, we classify the strongly <span><math><msub><mrow><mi>Ad</mi></mrow><mrow><mrow><mi>Sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></mrow></msub></math></span>-real elements in <span><math><mrow><mi>sp</mi></mrow><mo>(</mo><mn>2</mn><mi>n</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span>. We also classify skew-Hamiltonian matrices that are similar to their negatives via a symplectic involution.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"706 \",\"pages\":\"Pages 144-156\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004348\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004348","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

考虑辛李群Sp(2n,C)在其李代数Sp(2n,C)上的伴随作用。元素X∈sp(2n,C)称为AdSp(2n,C)-实if - X=Ad(g)X对于某些g∈sp(2n,C)。更进一步,如果−X=Ad(h)X对于某对合h∈Sp(2n,C),则X∈Sp(2n,C)称为强AdSp(2n,C)-实。证明了对于每一个元素X∈sp(2n,C),存在一个使−X=Ad(g)X的斜对合g∈sp(2n,C)。进一步,我们对sp(2n,C)中的强AdSp(2n,C)-实元素进行了分类。我们还通过辛对合对与其负数相似的偏哈密顿矩阵进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strongly real adjoint orbits of complex symplectic Lie group
We consider the adjoint action of the symplectic Lie group Sp(2n,C) on its Lie algebra sp(2n,C). An element Xsp(2n,C) is called AdSp(2n,C)-real if X=Ad(g)X for some gSp(2n,C). Moreover, if X=Ad(h)X for some involution hSp(2n,C), then Xsp(2n,C) is called strongly AdSp(2n,C)-real. In this paper, we prove that for every element Xsp(2n,C), there exists a skew-involution gSp(2n,C) such that X=Ad(g)X. Furthermore, we classify the strongly AdSp(2n,C)-real elements in sp(2n,C). We also classify skew-Hamiltonian matrices that are similar to their negatives via a symplectic involution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信