快速合成用于海水分离的超稳定氢进化的磷化镍纳米片†。

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Weiwu Chen, Feng Lin, Chong Wang, Zhiming M. Wang and Zhaojun Qin
{"title":"快速合成用于海水分离的超稳定氢进化的磷化镍纳米片†。","authors":"Weiwu Chen, Feng Lin, Chong Wang, Zhiming M. Wang and Zhaojun Qin","doi":"10.1039/D4TC03004D","DOIUrl":null,"url":null,"abstract":"<p >Efficient and stable electrocatalysts that can drive the hydrogen evolution reaction (HER) in seawater splitting are highly desirable for hydrogen production. Heterometal-doped nickel phosphides are generally considered as a potential candidate due to their unique properties and synergistic effect, which accelerates the electron transfer kinetics and boosts the intrinsic activity. Herein, we prepared Co-doped Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> (Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>) under different calcination times by fast and one-step chemical vapor deposition, and for comparison, a series of Fe-doped Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> (Fe–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>) were also prepared by the same method. Different calcination times bring different HER activity and the Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> prepared with 5 min calcination time (Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m) exhibits a great catalytic activity, being higher than other Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> and Fe–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>. In alkaline seawater, the overpotential needed for Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m is only 74 and 162 mV to achieve the current density of 10 and 100 mA cm<small><sup>−2</sup></small>, respectively. More importantly, Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m exhibits great mechanical and electrochemical stability, and can be stably run under the current density of 100 mA cm<small><sup>−2</sup></small> for more than twenty days. The short synthesis time, great catalytic activity, and ultra-long-term stability make Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m a suitable candidate in actual applications of seawater splitting for hydrogen.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 46","pages":" 18925-18933"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast synthesis of nickel phosphide nanosheets for ultra-stable hydrogen evolution in seawater splitting†\",\"authors\":\"Weiwu Chen, Feng Lin, Chong Wang, Zhiming M. Wang and Zhaojun Qin\",\"doi\":\"10.1039/D4TC03004D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Efficient and stable electrocatalysts that can drive the hydrogen evolution reaction (HER) in seawater splitting are highly desirable for hydrogen production. Heterometal-doped nickel phosphides are generally considered as a potential candidate due to their unique properties and synergistic effect, which accelerates the electron transfer kinetics and boosts the intrinsic activity. Herein, we prepared Co-doped Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> (Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>) under different calcination times by fast and one-step chemical vapor deposition, and for comparison, a series of Fe-doped Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> (Fe–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>) were also prepared by the same method. Different calcination times bring different HER activity and the Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> prepared with 5 min calcination time (Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m) exhibits a great catalytic activity, being higher than other Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small> and Fe–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>. In alkaline seawater, the overpotential needed for Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m is only 74 and 162 mV to achieve the current density of 10 and 100 mA cm<small><sup>−2</sup></small>, respectively. More importantly, Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m exhibits great mechanical and electrochemical stability, and can be stably run under the current density of 100 mA cm<small><sup>−2</sup></small> for more than twenty days. The short synthesis time, great catalytic activity, and ultra-long-term stability make Co–Ni<small><sub>5</sub></small>P<small><sub>4</sub></small>-5m a suitable candidate in actual applications of seawater splitting for hydrogen.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 46\",\"pages\":\" 18925-18933\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03004d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03004d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效、稳定的电催化剂能够推动海水分离过程中的氢进化反应(HER),是制氢的理想选择。掺杂杂金属的磷化镍因其独特的性质和协同效应,可加速电子转移动力学并提高其内在活性,因此被普遍认为是一种潜在的候选催化剂。在此,我们通过快速、一步化学气相沉积法制备了不同煅烧时间下的掺钴镍5P4(Co-Ni5P4),并用同样的方法制备了一系列掺铁镍5P4(Fe-Ni5P4)作为对比。不同的煅烧时间会带来不同的热释光活性,煅烧时间为 5 分钟的 Co-Ni5P4 (Co-Ni5P4-5m)具有很高的催化活性,高于其他 Co-Ni5P4 和 Fe-Ni5P4。在碱性海水中,Co-Ni5P4-5m 所需的过电位仅为 74 和 162 mV,电流密度分别为 10 和 100 mA cm-2。更重要的是,Co-Ni5P4-5m 具有极高的机械和电化学稳定性,可在 100 mA cm-2 的电流密度下稳定运行二十多天。较短的合成时间、较高的催化活性和超长的稳定性使 Co-Ni5P4-5m 成为海水裂解制氢实际应用的合适候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fast synthesis of nickel phosphide nanosheets for ultra-stable hydrogen evolution in seawater splitting†

Fast synthesis of nickel phosphide nanosheets for ultra-stable hydrogen evolution in seawater splitting†

Efficient and stable electrocatalysts that can drive the hydrogen evolution reaction (HER) in seawater splitting are highly desirable for hydrogen production. Heterometal-doped nickel phosphides are generally considered as a potential candidate due to their unique properties and synergistic effect, which accelerates the electron transfer kinetics and boosts the intrinsic activity. Herein, we prepared Co-doped Ni5P4 (Co–Ni5P4) under different calcination times by fast and one-step chemical vapor deposition, and for comparison, a series of Fe-doped Ni5P4 (Fe–Ni5P4) were also prepared by the same method. Different calcination times bring different HER activity and the Co–Ni5P4 prepared with 5 min calcination time (Co–Ni5P4-5m) exhibits a great catalytic activity, being higher than other Co–Ni5P4 and Fe–Ni5P4. In alkaline seawater, the overpotential needed for Co–Ni5P4-5m is only 74 and 162 mV to achieve the current density of 10 and 100 mA cm−2, respectively. More importantly, Co–Ni5P4-5m exhibits great mechanical and electrochemical stability, and can be stably run under the current density of 100 mA cm−2 for more than twenty days. The short synthesis time, great catalytic activity, and ultra-long-term stability make Co–Ni5P4-5m a suitable candidate in actual applications of seawater splitting for hydrogen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信