Jinyang Li, Wenye Deng, Yan Xue, Ni Ai, Kai Ding, Xianghui Chen, Weiwei Meng, Pengjun Zhao, Aimin Chang and Yongxin Xie
{"title":"Ba7Nb4-xCexMoO20:新型 NTC 热敏陶瓷的结构和电气性能研究","authors":"Jinyang Li, Wenye Deng, Yan Xue, Ni Ai, Kai Ding, Xianghui Chen, Weiwei Meng, Pengjun Zhao, Aimin Chang and Yongxin Xie","doi":"10.1039/D4TC03449J","DOIUrl":null,"url":null,"abstract":"<p >The hexagonal perovskite oxide Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> is widely studied in chemical devices due to its oxide-ionic conductivity at high temperatures. Ce<small><sup>4+</sup></small> doping into Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> was undertaken to optimize small polariton conduction and oxide ionic conductivity simultaneously. Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> materials were synthesized <em>via</em> solid phase sintering. XRD patterns indicate a single phase, SEM scans reveal increased densification with higher Ce doping concentrations, and the resistance temperature range expands from 400–900 °C to 300–1100 °C. Hall tests confirm that Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> carriers are electrons, indicating n-type conductivity. Nyquist plots illustrate that grain boundary resistance governs complex impedance, which shows gradual oxide ionic conductivity enhancement with rising temperature. The aging drift rate decreases to about 1%, suggesting good stability of Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> ceramics. These findings propose a feasible doping strategy for enhancing hexagonal perovskite oxide ceramics.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 46","pages":" 18819-18828"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ba7Nb4−xCexMoO20: structural and electrical property studies of a novel NTC thermal ceramic\",\"authors\":\"Jinyang Li, Wenye Deng, Yan Xue, Ni Ai, Kai Ding, Xianghui Chen, Weiwei Meng, Pengjun Zhao, Aimin Chang and Yongxin Xie\",\"doi\":\"10.1039/D4TC03449J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The hexagonal perovskite oxide Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> is widely studied in chemical devices due to its oxide-ionic conductivity at high temperatures. Ce<small><sup>4+</sup></small> doping into Ba<small><sub>7</sub></small>Nb<small><sub>4</sub></small>MoO<small><sub>20</sub></small> was undertaken to optimize small polariton conduction and oxide ionic conductivity simultaneously. Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> materials were synthesized <em>via</em> solid phase sintering. XRD patterns indicate a single phase, SEM scans reveal increased densification with higher Ce doping concentrations, and the resistance temperature range expands from 400–900 °C to 300–1100 °C. Hall tests confirm that Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> carriers are electrons, indicating n-type conductivity. Nyquist plots illustrate that grain boundary resistance governs complex impedance, which shows gradual oxide ionic conductivity enhancement with rising temperature. The aging drift rate decreases to about 1%, suggesting good stability of Ba<small><sub>7</sub></small>Nb<small><sub>4−<em>x</em></sub></small>Ce<small><sub><em>x</em></sub></small>MoO<small><sub>20</sub></small> ceramics. These findings propose a feasible doping strategy for enhancing hexagonal perovskite oxide ceramics.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 46\",\"pages\":\" 18819-18828\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03449j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03449j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
六方包晶氧化物 Ba7Nb4MoO20 因其在高温下的氧化物离子导电性而在化学装置中被广泛研究。在 Ba7Nb4MoO20 中掺入 Ce4+ 可同时优化小极化子传导性和氧化物离子传导性。Ba7Nb4-xCexMoO20 材料是通过固相烧结法合成的。XRD 图谱显示出单相,SEM 扫描显示出随着 Ce 掺杂浓度的增加,致密化程度提高,电阻温度范围从 400-900 °C 扩大到 300-1100°C。霍尔测试证实 Ba7Nb4-xCexMoO20 载流子为电子,表明其具有 n 型导电性。奈奎斯特图表明,晶界电阻控制着复合阻抗,随着温度的升高,氧化物离子导电性逐渐增强。老化漂移率降至约 1%,表明 Ba7Nb4-xCexMoO20 陶瓷具有良好的稳定性。这些发现为增强六方包晶氧化物陶瓷提出了一种可行的掺杂策略。
Ba7Nb4−xCexMoO20: structural and electrical property studies of a novel NTC thermal ceramic
The hexagonal perovskite oxide Ba7Nb4MoO20 is widely studied in chemical devices due to its oxide-ionic conductivity at high temperatures. Ce4+ doping into Ba7Nb4MoO20 was undertaken to optimize small polariton conduction and oxide ionic conductivity simultaneously. Ba7Nb4−xCexMoO20 materials were synthesized via solid phase sintering. XRD patterns indicate a single phase, SEM scans reveal increased densification with higher Ce doping concentrations, and the resistance temperature range expands from 400–900 °C to 300–1100 °C. Hall tests confirm that Ba7Nb4−xCexMoO20 carriers are electrons, indicating n-type conductivity. Nyquist plots illustrate that grain boundary resistance governs complex impedance, which shows gradual oxide ionic conductivity enhancement with rising temperature. The aging drift rate decreases to about 1%, suggesting good stability of Ba7Nb4−xCexMoO20 ceramics. These findings propose a feasible doping strategy for enhancing hexagonal perovskite oxide ceramics.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors