具有室温铁磁性的新型单晶 Hf1-xTixO2 1D 纳米结构†。

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mahdi Beedel, Joseph Palathinkal Thomas, Hanieh Farkhondeh, Lei Zhang, Nina F. Heinig and Kam Tong Leung
{"title":"具有室温铁磁性的新型单晶 Hf1-xTixO2 1D 纳米结构†。","authors":"Mahdi Beedel, Joseph Palathinkal Thomas, Hanieh Farkhondeh, Lei Zhang, Nina F. Heinig and Kam Tong Leung","doi":"10.1039/D4TC01753F","DOIUrl":null,"url":null,"abstract":"<p >Dilute magnetic semiconductor oxides (DMSOs) hold great promise in bridging spintronics with semiconductor electronics, offering the potential for highly compact, high data-processing devices with reduced power consumption. Oxygen-deficient HfO<small><sub>2</sub></small> stands out among DMSOs due to its technologically important characteristics—large dielectric constant (κ ≅ 25), high refractive index (2.9) and excellent compatibility with CMOS technology. The origin of ferromagnetism in DMSOs, including HfO<small><sub>2</sub></small>, is mainly attributed to oxygen vacancies. Two main strategies have been explored to enhance ferromagnetism in DMSOs: synthesizing low-dimensional nanostructures to increase oxygen vacancies <em>via</em> a high surface-to-volume ratio (<em>i.e.</em> a high specific surface area) and material doping with appropriate magnetic or non-magnetic ions to induce further vacancies within the lattice. The fabrication of doped 1D nanostructures combines both approaches to enhance ferromagnetism in DMSOs. To date, the fabrication of doped single-crystalline HfO<small><sub>2</sub></small> 1D nanostructures has remained elusive due to technical challenges. This work pioneers the fabrication of Ti-doped HfO<small><sub>2</sub></small> (<em>i.e.</em>, Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small>; 0.01 ≤ <em>x</em> ≤ 0.50) 1D nanostructures with novel magnetic properties by using catalyst-assisted pulsed laser deposition. Increasing the Ti content is found to lead to shorter Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> 1D nanostructures, while, interestingly, the resulting magnetic properties show enhancement with increased Ti content, with Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> (10 at% Ti doping) exhibiting saturation magnetization nearly twice that of undoped HfO<small><sub>2</sub></small> nanowires. Given the high compatibility of Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> with CMOS technology and their critical temperature above room temperature, these novel nanostructures promise new applications in spintronic-CMOS integrated device technology.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 46","pages":" 18807-18818"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel single-crystalline Hf1−xTixO2 1D nanostructures with room-temperature ferromagnetism†\",\"authors\":\"Mahdi Beedel, Joseph Palathinkal Thomas, Hanieh Farkhondeh, Lei Zhang, Nina F. Heinig and Kam Tong Leung\",\"doi\":\"10.1039/D4TC01753F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Dilute magnetic semiconductor oxides (DMSOs) hold great promise in bridging spintronics with semiconductor electronics, offering the potential for highly compact, high data-processing devices with reduced power consumption. Oxygen-deficient HfO<small><sub>2</sub></small> stands out among DMSOs due to its technologically important characteristics—large dielectric constant (κ ≅ 25), high refractive index (2.9) and excellent compatibility with CMOS technology. The origin of ferromagnetism in DMSOs, including HfO<small><sub>2</sub></small>, is mainly attributed to oxygen vacancies. Two main strategies have been explored to enhance ferromagnetism in DMSOs: synthesizing low-dimensional nanostructures to increase oxygen vacancies <em>via</em> a high surface-to-volume ratio (<em>i.e.</em> a high specific surface area) and material doping with appropriate magnetic or non-magnetic ions to induce further vacancies within the lattice. The fabrication of doped 1D nanostructures combines both approaches to enhance ferromagnetism in DMSOs. To date, the fabrication of doped single-crystalline HfO<small><sub>2</sub></small> 1D nanostructures has remained elusive due to technical challenges. This work pioneers the fabrication of Ti-doped HfO<small><sub>2</sub></small> (<em>i.e.</em>, Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small>; 0.01 ≤ <em>x</em> ≤ 0.50) 1D nanostructures with novel magnetic properties by using catalyst-assisted pulsed laser deposition. Increasing the Ti content is found to lead to shorter Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> 1D nanostructures, while, interestingly, the resulting magnetic properties show enhancement with increased Ti content, with Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> (10 at% Ti doping) exhibiting saturation magnetization nearly twice that of undoped HfO<small><sub>2</sub></small> nanowires. Given the high compatibility of Hf<small><sub>1−<em>x</em></sub></small>Ti<small><sub><em>x</em></sub></small>O<small><sub>2</sub></small> with CMOS technology and their critical temperature above room temperature, these novel nanostructures promise new applications in spintronic-CMOS integrated device technology.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 46\",\"pages\":\" 18807-18818\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01753f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc01753f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

稀释磁性半导体氧化物(DMSOs)在连接自旋电子学和半导体电子学方面大有可为,可为高紧凑、高数据处理能力、低功耗的设备提供潜力。缺氧二氧化铪因其重要的技术特性--大介电常数(κ ≅25)、高折射率(2.9)和与 CMOS 技术的出色兼容性--而在 DMSO 中脱颖而出。包括 HfO2 在内的二甲基亚砜的铁磁性主要归因于氧空位。人们探索了两种主要策略来增强二甲基亚砜中的铁磁性:合成低维纳米结构,通过高表面体积比(即高比表面积)来增加氧空位;在材料中掺入适当的磁性或非磁性离子,以诱导晶格内的更多空位。掺杂一维纳米结构的制造结合了这两种方法,以增强二甲基亚砜中的铁磁性。迄今为止,由于技术上的挑战,掺杂单晶 HfO2 1D 纳米结构的制备仍然难以实现。这项研究利用催化剂辅助脉冲激光沉积技术,率先制备出具有新型磁性能的掺钛 HfO2(即 Hf1-xTixO2;0.01 ≤ x ≤ 0.50)一维纳米结构。钛含量的增加会导致 Hf1-xTixO2 一维纳米结构变短,有趣的是,所产生的磁性能随着钛含量的增加而增强,Hf1-xTixO2(钛掺杂量为 10%)的饱和磁化率几乎是未掺杂 HfO2 纳米线的两倍。鉴于 Hf1-xTixO2 与 CMOS 技术的高度兼容性及其高于室温的临界温度,这些新型纳米结构有望在自旋电子-CMOS 集成器件技术中得到新的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel single-crystalline Hf1−xTixO2 1D nanostructures with room-temperature ferromagnetism†

Novel single-crystalline Hf1−xTixO2 1D nanostructures with room-temperature ferromagnetism†

Dilute magnetic semiconductor oxides (DMSOs) hold great promise in bridging spintronics with semiconductor electronics, offering the potential for highly compact, high data-processing devices with reduced power consumption. Oxygen-deficient HfO2 stands out among DMSOs due to its technologically important characteristics—large dielectric constant (κ ≅ 25), high refractive index (2.9) and excellent compatibility with CMOS technology. The origin of ferromagnetism in DMSOs, including HfO2, is mainly attributed to oxygen vacancies. Two main strategies have been explored to enhance ferromagnetism in DMSOs: synthesizing low-dimensional nanostructures to increase oxygen vacancies via a high surface-to-volume ratio (i.e. a high specific surface area) and material doping with appropriate magnetic or non-magnetic ions to induce further vacancies within the lattice. The fabrication of doped 1D nanostructures combines both approaches to enhance ferromagnetism in DMSOs. To date, the fabrication of doped single-crystalline HfO2 1D nanostructures has remained elusive due to technical challenges. This work pioneers the fabrication of Ti-doped HfO2 (i.e., Hf1−xTixO2; 0.01 ≤ x ≤ 0.50) 1D nanostructures with novel magnetic properties by using catalyst-assisted pulsed laser deposition. Increasing the Ti content is found to lead to shorter Hf1−xTixO2 1D nanostructures, while, interestingly, the resulting magnetic properties show enhancement with increased Ti content, with Hf1−xTixO2 (10 at% Ti doping) exhibiting saturation magnetization nearly twice that of undoped HfO2 nanowires. Given the high compatibility of Hf1−xTixO2 with CMOS technology and their critical temperature above room temperature, these novel nanostructures promise new applications in spintronic-CMOS integrated device technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信