Young-Woo Jang, Jeong-Wan Jo, Sung Kyu Park and Jaehyun Kim
{"title":"基于低维纳米材料的室温气体传感器","authors":"Young-Woo Jang, Jeong-Wan Jo, Sung Kyu Park and Jaehyun Kim","doi":"10.1039/D4TC03729D","DOIUrl":null,"url":null,"abstract":"<p >Recent atmospheric pollution which is mainly caused by an ever-increasing population, industrial gas waste, vehicle exhaust emissions, and indiscriminate burning of garbage has become a serious problem for the modern natural environment. It is necessary to continuously detect these gas pollutants and monitor toxic gases to prevent environmental deterioration. Room-temperature gas sensors have attracted considerable attention in the current gas sensor industry because of advantages such as low power consumption, great stability and simple manufacturing processes for low-cost sensor systems, smart electronics, and specifically Internet of Things (IoT) platforms. In particular, new emerging low-dimensional nanomaterials play a critical role in enhancing sensing properties owing to their unique structure and remarkable electronic, mechanical, and optical characteristics. This review presents the recent state-of-the art development of room-temperature gas sensor technologies based on low-dimensional nanomaterials. Various nanostructure materials such as 0D, 1D, and 2D nanomaterials are widely introduced and essential investigations of external stimuli methods including voltage biasing and light stimulation for driving gas sensing performance without relying on high temperature are fully covered. Finally, various device applications and recent developments including wearable gas sensors, machine learning and neuromorphic olfactory devices are discussed and future prospects and perspectives on the challenges and opportunities of room-temperature gas sensors based on low-dimensional nanomaterials are also provided.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 46","pages":" 18609-18627"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room-temperature gas sensors based on low-dimensional nanomaterials\",\"authors\":\"Young-Woo Jang, Jeong-Wan Jo, Sung Kyu Park and Jaehyun Kim\",\"doi\":\"10.1039/D4TC03729D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent atmospheric pollution which is mainly caused by an ever-increasing population, industrial gas waste, vehicle exhaust emissions, and indiscriminate burning of garbage has become a serious problem for the modern natural environment. It is necessary to continuously detect these gas pollutants and monitor toxic gases to prevent environmental deterioration. Room-temperature gas sensors have attracted considerable attention in the current gas sensor industry because of advantages such as low power consumption, great stability and simple manufacturing processes for low-cost sensor systems, smart electronics, and specifically Internet of Things (IoT) platforms. In particular, new emerging low-dimensional nanomaterials play a critical role in enhancing sensing properties owing to their unique structure and remarkable electronic, mechanical, and optical characteristics. This review presents the recent state-of-the art development of room-temperature gas sensor technologies based on low-dimensional nanomaterials. Various nanostructure materials such as 0D, 1D, and 2D nanomaterials are widely introduced and essential investigations of external stimuli methods including voltage biasing and light stimulation for driving gas sensing performance without relying on high temperature are fully covered. Finally, various device applications and recent developments including wearable gas sensors, machine learning and neuromorphic olfactory devices are discussed and future prospects and perspectives on the challenges and opportunities of room-temperature gas sensors based on low-dimensional nanomaterials are also provided.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 46\",\"pages\":\" 18609-18627\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03729d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03729d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Room-temperature gas sensors based on low-dimensional nanomaterials
Recent atmospheric pollution which is mainly caused by an ever-increasing population, industrial gas waste, vehicle exhaust emissions, and indiscriminate burning of garbage has become a serious problem for the modern natural environment. It is necessary to continuously detect these gas pollutants and monitor toxic gases to prevent environmental deterioration. Room-temperature gas sensors have attracted considerable attention in the current gas sensor industry because of advantages such as low power consumption, great stability and simple manufacturing processes for low-cost sensor systems, smart electronics, and specifically Internet of Things (IoT) platforms. In particular, new emerging low-dimensional nanomaterials play a critical role in enhancing sensing properties owing to their unique structure and remarkable electronic, mechanical, and optical characteristics. This review presents the recent state-of-the art development of room-temperature gas sensor technologies based on low-dimensional nanomaterials. Various nanostructure materials such as 0D, 1D, and 2D nanomaterials are widely introduced and essential investigations of external stimuli methods including voltage biasing and light stimulation for driving gas sensing performance without relying on high temperature are fully covered. Finally, various device applications and recent developments including wearable gas sensors, machine learning and neuromorphic olfactory devices are discussed and future prospects and perspectives on the challenges and opportunities of room-temperature gas sensors based on low-dimensional nanomaterials are also provided.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors