用蓝色激光二极管退火法制造的底栅多晶硅薄膜晶体管及其在直流和交流偏压下的可靠性

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohammad Masum Billah;Seongbok Kang;Jin Jang;Moath Alathbah
{"title":"用蓝色激光二极管退火法制造的底栅多晶硅薄膜晶体管及其在直流和交流偏压下的可靠性","authors":"Mohammad Masum Billah;Seongbok Kang;Jin Jang;Moath Alathbah","doi":"10.1109/LED.2024.3480123","DOIUrl":null,"url":null,"abstract":"We investigate the electrical reliability of inverted staggered low-temperature poly-Si (LTPS) thin-film transistors (TFT) under direct and alternate current (DC and AC gate pulses) operations fabricated by blue laser diode annealing (BLDA). From scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, smaller grain sizes (~70 nm) and smoother poly-Si surface (~1.18 nm) are achieved for solid-phase crystallization (SPC) by BLDA crystallization. However, partial melting (PM) of the silicon active layer exhibits a large grain size (~200 nm) with comparatively taller surface roughness (~7.73 nm). As compared to SPC devices, PM devices exhibit more electrical degradation including drain current (I\n<inline-formula> <tex-math>$_{\\text {DS}}\\text {)}$ </tex-math></inline-formula>\n instability and threshold voltage shift (\n<inline-formula> <tex-math>$\\Delta $ </tex-math></inline-formula>\nV\n<inline-formula> <tex-math>$_{\\text {Th}}\\text {)}$ </tex-math></inline-formula>\n under AC stress. Although, PM TFTs exhibit higher IDS, and field-effect mobility (\n<inline-formula> <tex-math>$\\mu _{\\text {FE}}\\text {)}$ </tex-math></inline-formula>\n, the protruded poly-Si layer causes severe carrier trapping/detrapping at grain boundary (GB) under AC stress. Besides, both the devices show stable electrical behavior under negative bias temperature stress (NBTS). We performed the technology computer-aided design (TCAD) simulation to validate the physical mechanism.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2415-2418"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bottom-Gate Poly-Si Thin Film Transistors Fabricated by Blue Laser Diode Annealing and Their Reliability Under DC and AC Bias Stresses\",\"authors\":\"Mohammad Masum Billah;Seongbok Kang;Jin Jang;Moath Alathbah\",\"doi\":\"10.1109/LED.2024.3480123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the electrical reliability of inverted staggered low-temperature poly-Si (LTPS) thin-film transistors (TFT) under direct and alternate current (DC and AC gate pulses) operations fabricated by blue laser diode annealing (BLDA). From scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, smaller grain sizes (~70 nm) and smoother poly-Si surface (~1.18 nm) are achieved for solid-phase crystallization (SPC) by BLDA crystallization. However, partial melting (PM) of the silicon active layer exhibits a large grain size (~200 nm) with comparatively taller surface roughness (~7.73 nm). As compared to SPC devices, PM devices exhibit more electrical degradation including drain current (I\\n<inline-formula> <tex-math>$_{\\\\text {DS}}\\\\text {)}$ </tex-math></inline-formula>\\n instability and threshold voltage shift (\\n<inline-formula> <tex-math>$\\\\Delta $ </tex-math></inline-formula>\\nV\\n<inline-formula> <tex-math>$_{\\\\text {Th}}\\\\text {)}$ </tex-math></inline-formula>\\n under AC stress. Although, PM TFTs exhibit higher IDS, and field-effect mobility (\\n<inline-formula> <tex-math>$\\\\mu _{\\\\text {FE}}\\\\text {)}$ </tex-math></inline-formula>\\n, the protruded poly-Si layer causes severe carrier trapping/detrapping at grain boundary (GB) under AC stress. Besides, both the devices show stable electrical behavior under negative bias temperature stress (NBTS). We performed the technology computer-aided design (TCAD) simulation to validate the physical mechanism.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2415-2418\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10716722/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10716722/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了通过蓝色激光二极管退火(BLDA)制造的倒置交错低温多晶硅(LTPS)薄膜晶体管(TFT)在直流和交流栅极脉冲操作下的电气可靠性。从扫描电子显微镜(SEM)和原子力显微镜(AFM)图像来看,通过 BLDA 结晶实现了更小的晶粒尺寸(约 70 nm)和更光滑的多晶硅表面(约 1.18 nm)。然而,硅活性层的部分熔化(PM)则表现出较大的晶粒尺寸(约 200 nm)和相对较高的表面粗糙度(约 7.73 nm)。与 SPC 器件相比,PM 器件在交流应力作用下表现出更多的电学劣化,包括漏极电流(I $_{text {DS}}\text {)}$ 不稳定和阈值电压偏移($\Delta $ V $_{text {Th}}\text {)}$。虽然 PM TFT 表现出更高的 IDS 和场效应迁移率($\mu _\{text {FE}}\text {)}$,但在交流应力作用下,突出的多晶硅层会导致晶界(GB)处出现严重的载流子捕获/逸出现象。此外,这两种器件在负偏压温度应力(NBTS)下都表现出稳定的电气性能。我们进行了技术计算机辅助设计(TCAD)仿真,以验证物理机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bottom-Gate Poly-Si Thin Film Transistors Fabricated by Blue Laser Diode Annealing and Their Reliability Under DC and AC Bias Stresses
We investigate the electrical reliability of inverted staggered low-temperature poly-Si (LTPS) thin-film transistors (TFT) under direct and alternate current (DC and AC gate pulses) operations fabricated by blue laser diode annealing (BLDA). From scanning electron microscopy (SEM), and atomic force microscopy (AFM) images, smaller grain sizes (~70 nm) and smoother poly-Si surface (~1.18 nm) are achieved for solid-phase crystallization (SPC) by BLDA crystallization. However, partial melting (PM) of the silicon active layer exhibits a large grain size (~200 nm) with comparatively taller surface roughness (~7.73 nm). As compared to SPC devices, PM devices exhibit more electrical degradation including drain current (I $_{\text {DS}}\text {)}$ instability and threshold voltage shift ( $\Delta $ V $_{\text {Th}}\text {)}$ under AC stress. Although, PM TFTs exhibit higher IDS, and field-effect mobility ( $\mu _{\text {FE}}\text {)}$ , the protruded poly-Si layer causes severe carrier trapping/detrapping at grain boundary (GB) under AC stress. Besides, both the devices show stable electrical behavior under negative bias temperature stress (NBTS). We performed the technology computer-aided design (TCAD) simulation to validate the physical mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信