Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo
{"title":"IGZO/ITO 异质结构沟道薄膜晶体管中的有效界面沟道控制","authors":"Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo","doi":"10.1109/LED.2024.3477438","DOIUrl":null,"url":null,"abstract":"During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2419-2422"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Interface Channel Control in IGZO/ITO Heterostructure-Channel Thin Film Transistors\",\"authors\":\"Jie Luo;Yanyu Yang;Yupeng Lu;Yunjiao Bao;Guilei Wang;Gaobo Xu;Huaxiang Yin;Chao Zhao;Jun Luo\",\"doi\":\"10.1109/LED.2024.3477438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2419-2422\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713393/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713393/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Effective Interface Channel Control in IGZO/ITO Heterostructure-Channel Thin Film Transistors
During the investigation of amorphous oxide semiconductor thin film transistors (TFTs), researchers found that TFTs containing a heterostructure-channel demonstrate exceptional mobility. This study focuses on the physical insights into the interfacial channel formation and modulating the device performance. The InGaZnO / InSnO heterostructure-channel TFTs were utilized. The band structure of their interface channel was elucidated by Ultraviolet Photoelectron Spectroscopy and Reflection Electron Energy Loss Spectroscopy. Through the examination of the band structures of heterostructure -channel TFTs, we have discovered that the thickness of the InSnO layer can modify the interface band-edge via the quantum confinement effect. By that, the threshold voltage of the heterostructure-channel TFT was altered.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.