James L. Doherty;Ye Zhang;Brittany N. Smith;Hansel Alex Hobbie;Ioannis Kymissis;Aaron D. Franklin
{"title":"采用碳基可回收晶体管印刷背板的液晶显示器","authors":"James L. Doherty;Ye Zhang;Brittany N. Smith;Hansel Alex Hobbie;Ioannis Kymissis;Aaron D. Franklin","doi":"10.1109/LED.2024.3477434","DOIUrl":null,"url":null,"abstract":"We report the first demonstration of displays driven by embedded transistors that were additively manufactured entirely by aerosol jet printing. The backplanes of the liquid crystal displays (LCDs) consist of transistors printed from graphene, carbon nanotubes, and crystalline nanocellulose onto a glass substrate with prepatterned indium tin oxide electrodes. We addressed challenges of integrating fully printed devices into both the crossbar array structure and layered vertical structure required for an LCD, showing successful pixel switching at up to 60 Hz. As these thin-film transistors are printed exclusively from carbon-based recyclable materials, without high temperatures or vacuum processing, they offer a promising means for reducing waste in future display technologies.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2427-2430"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Liquid Crystal Displays With Printed Carbon-Based Recyclable Transistor Backplanes\",\"authors\":\"James L. Doherty;Ye Zhang;Brittany N. Smith;Hansel Alex Hobbie;Ioannis Kymissis;Aaron D. Franklin\",\"doi\":\"10.1109/LED.2024.3477434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the first demonstration of displays driven by embedded transistors that were additively manufactured entirely by aerosol jet printing. The backplanes of the liquid crystal displays (LCDs) consist of transistors printed from graphene, carbon nanotubes, and crystalline nanocellulose onto a glass substrate with prepatterned indium tin oxide electrodes. We addressed challenges of integrating fully printed devices into both the crossbar array structure and layered vertical structure required for an LCD, showing successful pixel switching at up to 60 Hz. As these thin-film transistors are printed exclusively from carbon-based recyclable materials, without high temperatures or vacuum processing, they offer a promising means for reducing waste in future display technologies.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2427-2430\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10713360/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10713360/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Liquid Crystal Displays With Printed Carbon-Based Recyclable Transistor Backplanes
We report the first demonstration of displays driven by embedded transistors that were additively manufactured entirely by aerosol jet printing. The backplanes of the liquid crystal displays (LCDs) consist of transistors printed from graphene, carbon nanotubes, and crystalline nanocellulose onto a glass substrate with prepatterned indium tin oxide electrodes. We addressed challenges of integrating fully printed devices into both the crossbar array structure and layered vertical structure required for an LCD, showing successful pixel switching at up to 60 Hz. As these thin-film transistors are printed exclusively from carbon-based recyclable materials, without high temperatures or vacuum processing, they offer a promising means for reducing waste in future display technologies.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.