优化栅极注入式铁电 NAND 单元中的去俘获脉冲,最大限度地减少写入后读取延迟问题

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Giuk Kim;Hyojun Choi;Hongrae Cho;Sangho Lee;Hunbeom Shin;Hyunjun Kang;Hoon Kim;Seokjoong Shin;Seonjae Park;Sunseong Kwon;Youngjin Lim;Kang Kim;Jong Min Chung;Il-Kwon Oh;Sang-Hee Ko Park;Jinho Ahn;Sanghun Jeon
{"title":"优化栅极注入式铁电 NAND 单元中的去俘获脉冲,最大限度地减少写入后读取延迟问题","authors":"Giuk Kim;Hyojun Choi;Hongrae Cho;Sangho Lee;Hunbeom Shin;Hyunjun Kang;Hoon Kim;Seokjoong Shin;Seonjae Park;Sunseong Kwon;Youngjin Lim;Kang Kim;Jong Min Chung;Il-Kwon Oh;Sang-Hee Ko Park;Jinho Ahn;Sanghun Jeon","doi":"10.1109/LED.2024.3482099","DOIUrl":null,"url":null,"abstract":"The ferroelectric (FE) NAND flash, featuring metal-interlayer-FE-interlayer-silicon (MIFIS) gate stacks, leverages both charge trapping and polarization (P) switching to achieve a broad memory window (MW) and low operation voltage. These remarkable advancements establish it as a viable contender for future NAND flash technologies. However, the read-after-write-delay (RAWD) problem during program/erase (PGM/ERS), caused by channel-injected interface trapped charges (\n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n) between the FE layer and the channel interlayer (Ch.IL), leading to short-term Vth variations, remains unexplored in MIFIS FE-NAND cells. This letter presents the first analysis of RAWD in FE-NAND cells, including the experimental optimization of a de-trap pulse that effectively eliminates \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n whereas preserving both gate-injected interface trapped charges (\n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n’) and P. Consequently, the FE-NAND cell exhibits a narrow MW of 3.45 V at a delay time (\n<inline-formula> <tex-math>${t}_{\\text {Delay}}\\text {)}$ </tex-math></inline-formula>\n of \n<inline-formula> <tex-math>$1~\\mu $ </tex-math></inline-formula>\ns between PGM/ERS and read operations, expending to 7.40 V at a tDelay of 1 s. This variation is attributed to the generation of \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n and the subsequent de-trap process, affecting channel conductivity. To thoroughly address the RAWD, various pulse widths and amplitudes are experimentally explored immediately post-PGM/ERS to optimize the de-trap pulse for selective \n<inline-formula> <tex-math>${Q}_{\\text {it}}$ </tex-math></inline-formula>\n removal. Upon applying the optimized de-trap pulse, the stable wide MW (7.40 V) is consistently maintained regardless of \n<inline-formula> <tex-math>${t}_{\\text {Delay}}$ </tex-math></inline-formula>\n. This work is meaningful as it brings attention to previously unexplored issues in next-generation ferroelectric (FE) NAND cells and suggests practical operational solutions.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2359-2362"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing De-Trap Pulses in Gate-Injection Type Ferroelectric NAND Cells to Minimize Read After Write Delay Issue\",\"authors\":\"Giuk Kim;Hyojun Choi;Hongrae Cho;Sangho Lee;Hunbeom Shin;Hyunjun Kang;Hoon Kim;Seokjoong Shin;Seonjae Park;Sunseong Kwon;Youngjin Lim;Kang Kim;Jong Min Chung;Il-Kwon Oh;Sang-Hee Ko Park;Jinho Ahn;Sanghun Jeon\",\"doi\":\"10.1109/LED.2024.3482099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The ferroelectric (FE) NAND flash, featuring metal-interlayer-FE-interlayer-silicon (MIFIS) gate stacks, leverages both charge trapping and polarization (P) switching to achieve a broad memory window (MW) and low operation voltage. These remarkable advancements establish it as a viable contender for future NAND flash technologies. However, the read-after-write-delay (RAWD) problem during program/erase (PGM/ERS), caused by channel-injected interface trapped charges (\\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n) between the FE layer and the channel interlayer (Ch.IL), leading to short-term Vth variations, remains unexplored in MIFIS FE-NAND cells. This letter presents the first analysis of RAWD in FE-NAND cells, including the experimental optimization of a de-trap pulse that effectively eliminates \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n whereas preserving both gate-injected interface trapped charges (\\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n’) and P. Consequently, the FE-NAND cell exhibits a narrow MW of 3.45 V at a delay time (\\n<inline-formula> <tex-math>${t}_{\\\\text {Delay}}\\\\text {)}$ </tex-math></inline-formula>\\n of \\n<inline-formula> <tex-math>$1~\\\\mu $ </tex-math></inline-formula>\\ns between PGM/ERS and read operations, expending to 7.40 V at a tDelay of 1 s. This variation is attributed to the generation of \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n and the subsequent de-trap process, affecting channel conductivity. To thoroughly address the RAWD, various pulse widths and amplitudes are experimentally explored immediately post-PGM/ERS to optimize the de-trap pulse for selective \\n<inline-formula> <tex-math>${Q}_{\\\\text {it}}$ </tex-math></inline-formula>\\n removal. Upon applying the optimized de-trap pulse, the stable wide MW (7.40 V) is consistently maintained regardless of \\n<inline-formula> <tex-math>${t}_{\\\\text {Delay}}$ </tex-math></inline-formula>\\n. This work is meaningful as it brings attention to previously unexplored issues in next-generation ferroelectric (FE) NAND cells and suggests practical operational solutions.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2359-2362\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10739400/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10739400/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

铁电(FE)NAND 闪存采用金属-夹层-铁电-夹层-硅(MIFIS)栅极堆栈,利用电荷捕获和极化(P)开关实现宽内存窗口(MW)和低工作电压。这些卓越的进步使其成为未来 NAND 闪存技术的有力竞争者。然而,在 MIFIS FE-NAND 单元中,由于 FE 层和沟道夹层(Ch.IL)之间的沟道注入界面陷波(${Q}_{text {it}}$)导致短期 Vth 变化,从而引起了编程/擦除(PGM/ERS)期间的读写延迟(RAWD)问题。本文首次分析了 FE-NAND 单元中的 RAWD,包括对去陷阱脉冲的实验优化,该脉冲可有效消除 ${Q}_{text {it}}$,同时保留栅极注入的界面陷阱电荷 ( ${Q}_{text {it}}$')和 P。这种变化归因于 ${Q}_{text {it}}$ 的产生和随后的去陷阱过程,从而影响了沟道电导率。为了彻底解决 RAWD 问题,实验探索了紧接 PGM/ERS 之后的各种脉冲宽度和振幅,以优化去俘获脉冲,从而选择性地去除 ${Q}_{text{it}}$。应用优化后的去俘获脉冲后,无论 ${t}_{text {Delay}}$ 如何变化,稳定的宽 MW(7.40 V)始终保持不变。这项研究意义重大,因为它关注到了下一代铁电 (FE) NAND 单元中以前未曾探索过的问题,并提出了切实可行的操作解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing De-Trap Pulses in Gate-Injection Type Ferroelectric NAND Cells to Minimize Read After Write Delay Issue
The ferroelectric (FE) NAND flash, featuring metal-interlayer-FE-interlayer-silicon (MIFIS) gate stacks, leverages both charge trapping and polarization (P) switching to achieve a broad memory window (MW) and low operation voltage. These remarkable advancements establish it as a viable contender for future NAND flash technologies. However, the read-after-write-delay (RAWD) problem during program/erase (PGM/ERS), caused by channel-injected interface trapped charges ( ${Q}_{\text {it}}$ ) between the FE layer and the channel interlayer (Ch.IL), leading to short-term Vth variations, remains unexplored in MIFIS FE-NAND cells. This letter presents the first analysis of RAWD in FE-NAND cells, including the experimental optimization of a de-trap pulse that effectively eliminates ${Q}_{\text {it}}$ whereas preserving both gate-injected interface trapped charges ( ${Q}_{\text {it}}$ ’) and P. Consequently, the FE-NAND cell exhibits a narrow MW of 3.45 V at a delay time ( ${t}_{\text {Delay}}\text {)}$ of $1~\mu $ s between PGM/ERS and read operations, expending to 7.40 V at a tDelay of 1 s. This variation is attributed to the generation of ${Q}_{\text {it}}$ and the subsequent de-trap process, affecting channel conductivity. To thoroughly address the RAWD, various pulse widths and amplitudes are experimentally explored immediately post-PGM/ERS to optimize the de-trap pulse for selective ${Q}_{\text {it}}$ removal. Upon applying the optimized de-trap pulse, the stable wide MW (7.40 V) is consistently maintained regardless of ${t}_{\text {Delay}}$ . This work is meaningful as it brings attention to previously unexplored issues in next-generation ferroelectric (FE) NAND cells and suggests practical operational solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信