原子层沉积氧化锌负电容薄膜晶体管与基于 Hf0.5Zr0.5O2 的铁电栅极

IF 4.1 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kun Wang;Sizhe Li;Liwei Ji;Jiaxian Wan;Zexin Tu;Hao Wu;Chang Liu
{"title":"原子层沉积氧化锌负电容薄膜晶体管与基于 Hf0.5Zr0.5O2 的铁电栅极","authors":"Kun Wang;Sizhe Li;Liwei Ji;Jiaxian Wan;Zexin Tu;Hao Wu;Chang Liu","doi":"10.1109/LED.2024.3478316","DOIUrl":null,"url":null,"abstract":"High-performance ZnO thin-film transistors (TFTs) with Hf\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\nZr\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\nO2 (HZO)-based ferroelectric gates have been designed and fabricated. In order to increase the thickness of HZO without sacrificing their ferroelectric properties and reducing the leakage current of the devices, multilayer nanolaminate structure was designed, which allows the HZO dielectric layer to still have a high remnant polarization (\n<inline-formula> <tex-math>$2{P}_{\\text {r}}= 50.2~\\mu $ </tex-math></inline-formula>\nC/cm\n<inline-formula> <tex-math>$^{{2}}\\text {)}$ </tex-math></inline-formula>\n at a thickness of 30 nm. By introducing multilayer nanolaminate HZO film, the devices exhibit excellent performance, including an ultralow subthreshold swing (SS) of 96.4 mV/dec at room temperature, which is only 47% of the SS of conventional TFTs under the same process conditions, a large \n<inline-formula> <tex-math>${I}_{\\text {ON}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${I}_{\\text {OFF}}$ </tex-math></inline-formula>\n ratio of \n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\n, a high field-effect mobility of 16.3 cm2V\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\ns\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\n and a proper threshold voltage of 0.5 V. Our results demonstrate the feasibility of augmenting switching speed and reducing the power consumption of ZnO TFTs by introducing HZO ferroelectric gates.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"45 12","pages":"2399-2402"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atomic Layer Deposited ZnO Negative Capacitance Thin-Film Transistors With Hf0.5Zr0.5O2-Based Ferroelectric Gates\",\"authors\":\"Kun Wang;Sizhe Li;Liwei Ji;Jiaxian Wan;Zexin Tu;Hao Wu;Chang Liu\",\"doi\":\"10.1109/LED.2024.3478316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-performance ZnO thin-film transistors (TFTs) with Hf\\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\\nZr\\n<inline-formula> <tex-math>$_{{0}.{5}}$ </tex-math></inline-formula>\\nO2 (HZO)-based ferroelectric gates have been designed and fabricated. In order to increase the thickness of HZO without sacrificing their ferroelectric properties and reducing the leakage current of the devices, multilayer nanolaminate structure was designed, which allows the HZO dielectric layer to still have a high remnant polarization (\\n<inline-formula> <tex-math>$2{P}_{\\\\text {r}}= 50.2~\\\\mu $ </tex-math></inline-formula>\\nC/cm\\n<inline-formula> <tex-math>$^{{2}}\\\\text {)}$ </tex-math></inline-formula>\\n at a thickness of 30 nm. By introducing multilayer nanolaminate HZO film, the devices exhibit excellent performance, including an ultralow subthreshold swing (SS) of 96.4 mV/dec at room temperature, which is only 47% of the SS of conventional TFTs under the same process conditions, a large \\n<inline-formula> <tex-math>${I}_{\\\\text {ON}}$ </tex-math></inline-formula>\\n/\\n<inline-formula> <tex-math>${I}_{\\\\text {OFF}}$ </tex-math></inline-formula>\\n ratio of \\n<inline-formula> <tex-math>$10^{{8}}$ </tex-math></inline-formula>\\n, a high field-effect mobility of 16.3 cm2V\\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\\ns\\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\\n and a proper threshold voltage of 0.5 V. Our results demonstrate the feasibility of augmenting switching speed and reducing the power consumption of ZnO TFTs by introducing HZO ferroelectric gates.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"45 12\",\"pages\":\"2399-2402\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10714374/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10714374/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们设计并制造了具有基于 Hf $_{{0}.{5}}$ Zr $_{{0}.{5}}$ O2 (HZO) 铁电栅极的高性能 ZnO 薄膜晶体管 (TFT)。为了增加 HZO 的厚度而不牺牲其铁电特性并降低器件的漏电流,设计了多层纳米层压结构,这使得 HZO 介电层在厚度为 30 nm 时仍具有较高的残余极化(2{P}_{text{r}}= 50.2~\mu $ C/cm $^{{2}}\text {)}$。通过引入多层纳米层状 HZO 薄膜,器件表现出卓越的性能,包括室温下 96.4 mV/dec 的超低阈下摆幅(SS)。4 mV/dec,仅为相同工艺条件下传统 TFT SS 的 47%;${I}_{text {ON}}$/${I}_{text {OFF}}$比值高达 $10^{{8}}$;场效应迁移率高达 16.3 cm2V $^{-{1}}$ s $^{-{1}}$;阈值电压为 0.5 V。我们的研究结果证明了通过引入 HZO 铁电栅极来提高 ZnO TFT 开关速度和降低功耗的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atomic Layer Deposited ZnO Negative Capacitance Thin-Film Transistors With Hf0.5Zr0.5O2-Based Ferroelectric Gates
High-performance ZnO thin-film transistors (TFTs) with Hf $_{{0}.{5}}$ Zr $_{{0}.{5}}$ O2 (HZO)-based ferroelectric gates have been designed and fabricated. In order to increase the thickness of HZO without sacrificing their ferroelectric properties and reducing the leakage current of the devices, multilayer nanolaminate structure was designed, which allows the HZO dielectric layer to still have a high remnant polarization ( $2{P}_{\text {r}}= 50.2~\mu $ C/cm $^{{2}}\text {)}$ at a thickness of 30 nm. By introducing multilayer nanolaminate HZO film, the devices exhibit excellent performance, including an ultralow subthreshold swing (SS) of 96.4 mV/dec at room temperature, which is only 47% of the SS of conventional TFTs under the same process conditions, a large ${I}_{\text {ON}}$ / ${I}_{\text {OFF}}$ ratio of $10^{{8}}$ , a high field-effect mobility of 16.3 cm2V $^{-{1}}$ s $^{-{1}}$ and a proper threshold voltage of 0.5 V. Our results demonstrate the feasibility of augmenting switching speed and reducing the power consumption of ZnO TFTs by introducing HZO ferroelectric gates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信