{"title":"与年龄有关的 CD8+ 组织常驻记忆 T 细胞减少会损害抗肿瘤免疫力。","authors":"Siyu Pei, Xiuyu Deng, Ruirui Yang, Hui Wang, Jian-Hong Shi, Xueqing Wang, Jia Huang, Yu Tian, Rongjing Wang, Sulin Zhang, Hui Hou, Jing Xu, Qingcheng Zhu, Huan Huang, Jialing Ye, Cong-Yi Wang, Wei Lu, Qingquan Luo, Zhi-Yu Ni, Mingyue Zheng, Yichuan Xiao","doi":"10.1038/s43587-024-00746-5","DOIUrl":null,"url":null,"abstract":"Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy. Exploring how aging compromises antitumor immunity, the authors reveal an age-related impairment of cytotoxic CD8+ TRM cells in mouse tumor models and clinical samples. They implicate BFAR signaling and show that targeting BFAR restores TRM generation and tumor control.","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":"4 12","pages":"1828-1844"},"PeriodicalIF":17.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Age-related decline in CD8+ tissue resident memory T cells compromises antitumor immunity\",\"authors\":\"Siyu Pei, Xiuyu Deng, Ruirui Yang, Hui Wang, Jian-Hong Shi, Xueqing Wang, Jia Huang, Yu Tian, Rongjing Wang, Sulin Zhang, Hui Hou, Jing Xu, Qingcheng Zhu, Huan Huang, Jialing Ye, Cong-Yi Wang, Wei Lu, Qingquan Luo, Zhi-Yu Ni, Mingyue Zheng, Yichuan Xiao\",\"doi\":\"10.1038/s43587-024-00746-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy. Exploring how aging compromises antitumor immunity, the authors reveal an age-related impairment of cytotoxic CD8+ TRM cells in mouse tumor models and clinical samples. They implicate BFAR signaling and show that targeting BFAR restores TRM generation and tumor control.\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\"4 12\",\"pages\":\"1828-1844\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43587-024-00746-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43587-024-00746-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Age-related decline in CD8+ tissue resident memory T cells compromises antitumor immunity
Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy. Exploring how aging compromises antitumor immunity, the authors reveal an age-related impairment of cytotoxic CD8+ TRM cells in mouse tumor models and clinical samples. They implicate BFAR signaling and show that targeting BFAR restores TRM generation and tumor control.