利用纳米剥离法制造圆盘超微电极

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Yanquan Geng, Hainan Zhao, Yongda Yan, Zhuo Fang, Jiqiang Wang
{"title":"利用纳米剥离法制造圆盘超微电极","authors":"Yanquan Geng, Hainan Zhao, Yongda Yan, Zhuo Fang, Jiqiang Wang","doi":"10.1063/5.0228902","DOIUrl":null,"url":null,"abstract":"<p><p>The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"95 11","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of disk ultramicroelectrode using nanoskiving method.\",\"authors\":\"Yanquan Geng, Hainan Zhao, Yongda Yan, Zhuo Fang, Jiqiang Wang\",\"doi\":\"10.1063/5.0228902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"95 11\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0228902\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0228902","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

与宏观电极相比,超微电极的检测时间可缩短至纳秒级,从而实现对微观结构瞬时电化学行为的实时监测。因此,超微电极的制备近年来备受关注。本研究提出了一种基于纳米剥离法制备电极端部尺寸可控的盘状超微电极的新方法。超微电极的特征尺寸可由纳米孔化参数控制。在由 1 mM FcMeOH(二茂铁甲醇)和 0.1 M KCl 水溶液组成的溶液体系中,对所制备超微电极的电化学性能进行了评估。该电极的稳态极限电流偏差率为 7%,可连续工作 600 秒。此外,该电极还集成了微米级精度的扫描和定位装置,可对微米结构阵列样品进行电化学表征。成功测量了掺锡氧化铟样品的电化学图像。本研究的资金为制备超微电极提供了一种新方法。重要的是,建立了可用于测量电化学图像的高精度电化学成像设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabrication of disk ultramicroelectrode using nanoskiving method.

The detection time of the ultramicroelectrode can be reduced to nanoseconds when compared to the macroscopic electrode, enabling real-time monitoring of the instantaneous electrochemical behavior of the microstructure. Preparing ultramicroelectrode thus has drawn great attention recently. In the present study, a novel method for the preparation of disk ultramicroelectrodes with controllable electrode end sizes based on the nanoskiving method is proposed. The feature dimensions of the ultramicroelectrode can be controlled by the nanoskiving parameters. The electrochemical performance of the prepared ultramicroelectrode is evaluated in the solution system consisting of a 1 mM FcMeOH (ferrocenyl methanol) and 0.1 M KCl aqueous solution. The steady-state limit current deviation rate of the electrode is 7%, and it can work continuously for 600 s. Moreover, the electrode is integrated with micrometer precision scanning and positioning devices, which conduct electrochemical characterization of the micron structure array sample. The electrochemical image of the tin-doped indium oxide sample is measured successfully. The funding in this study provides a novel method to prepare ultramicroelectrodes. Importantly, high-precision electrochemical imaging equipment is established that can be used to measure electrochemical images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信