Sara Viggiano, Rita Argenziano, Adriana Lordi, Amalia Conte, Matteo Alessandro Del Nobile, Lucia Panzella, Alessandra Napolitano
{"title":"将石榴废弃物提取物的强大抗氧化和抗菌活性与乳清蛋白涂层形成能力相结合的食品保鲜策略。","authors":"Sara Viggiano, Rita Argenziano, Adriana Lordi, Amalia Conte, Matteo Alessandro Del Nobile, Lucia Panzella, Alessandra Napolitano","doi":"10.3390/antiox13111394","DOIUrl":null,"url":null,"abstract":"<p><p>Different solvents water, ethanol and ethanol/water (6:4 <i>v</i>/<i>v</i>), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 <i>v</i>/<i>v</i>) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic <i>Alicyclobacillus acidoterrestris</i> at a concentration as low as 1%. The preservation of the organoleptic profile of <i>A. acidoterrestris</i>-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins' isolate (WPI) at 5% <i>w</i>/<i>w</i>, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging.</p>","PeriodicalId":7984,"journal":{"name":"Antioxidants","volume":"13 11","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591387/pdf/","citationCount":"0","resultStr":"{\"title\":\"Combining the Powerful Antioxidant and Antimicrobial Activities of Pomegranate Waste Extracts with Whey Protein Coating-Forming Ability for Food Preservation Strategies.\",\"authors\":\"Sara Viggiano, Rita Argenziano, Adriana Lordi, Amalia Conte, Matteo Alessandro Del Nobile, Lucia Panzella, Alessandra Napolitano\",\"doi\":\"10.3390/antiox13111394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Different solvents water, ethanol and ethanol/water (6:4 <i>v</i>/<i>v</i>), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 <i>v</i>/<i>v</i>) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic <i>Alicyclobacillus acidoterrestris</i> at a concentration as low as 1%. The preservation of the organoleptic profile of <i>A. acidoterrestris</i>-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins' isolate (WPI) at 5% <i>w</i>/<i>w</i>, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging.</p>\",\"PeriodicalId\":7984,\"journal\":{\"name\":\"Antioxidants\",\"volume\":\"13 11\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11591387/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antioxidants\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antiox13111394\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antiox13111394","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Combining the Powerful Antioxidant and Antimicrobial Activities of Pomegranate Waste Extracts with Whey Protein Coating-Forming Ability for Food Preservation Strategies.
Different solvents water, ethanol and ethanol/water (6:4 v/v), were compared in the extraction of pomegranate peels and seeds (PPS) in terms of recovery yields, antioxidant properties, and antimicrobial action against typical spoilage bacterial and fungal species. The best performing extract (ethanol/water (6:4 v/v) was shown to contain mostly ellagic acid and punicalagin as phenolic compounds (5% overall) and hydrolysable tannins (16% as ellagic acid equivalents) and was able to inhibit the growth of the acidophilic Alicyclobacillus acidoterrestris at a concentration as low as 1%. The preservation of the organoleptic profile of A. acidoterrestris-inoculated apple juice with extract at 1% over 20 days was also observed thanks to the complete inhibition of bacterial growth, while the extract at 0.1% warranted a significant (40%) inhibition of the enzymatic browning of apple smoothies over the first 30 min. When incorporated in whey proteins' isolate (WPI) at 5% w/w, the hydroalcoholic extract conferred well appreciable antioxidant properties to the resulting coating-forming hydrogel, comparable to those expected for the pure extract considering the amount present. The WPI coatings loaded with the hydroalcoholic extract at 5% were able to delay the browning of cut fruit by ca. 33% against a 22% inhibition observed with the sole WPI. In addition, the functionalized coating showed an inhibition of lipid peroxidation of Gouda cheese 2-fold higher with respect to that observed with WPI alone. These results open good perspectives toward sustainable food preservation strategies, highlighting the potential of PPS extract for the implementation of WPI-based active packaging.
AntioxidantsBiochemistry, Genetics and Molecular Biology-Physiology
CiteScore
10.60
自引率
11.40%
发文量
2123
审稿时长
16.3 days
期刊介绍:
Antioxidants (ISSN 2076-3921), provides an advanced forum for studies related to the science and technology of antioxidants. It publishes research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.