关于量子纠缠可蒸馏性猜想的说明

IF 1 3区 数学 Q1 MATHEMATICS
Weng Kun Sio, Che-Man Cheng
{"title":"关于量子纠缠可蒸馏性猜想的说明","authors":"Weng Kun Sio,&nbsp;Che-Man Cheng","doi":"10.1016/j.laa.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>A conjecture from the distillability of quantum entanglement is that when <em>A</em> and <em>B</em> are <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> trace zero complex matrices and <span><math><msup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>‖</mo><mi>B</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> (where <span><math><mo>‖</mo><mo>⋅</mo><mo>‖</mo></math></span> is the Frobenius norm), the sum of squares of the largest two singular values of <span><math><mi>A</mi><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊗</mo><mi>B</mi></math></span> does not exceed 1/2. In this paper, the conjecture is proved when<ul><li><span>(i)</span><span><div><em>A</em> or <em>B</em> is unitarily similar to a direct sum of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> trace zero matrices;</div></span></li><li><span>(ii)</span><span><div><em>A</em> and <em>B</em> are unitarily similar to matrices, when partitioned into <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> blocks, having zero diagonal blocks.</div></span></li></ul></div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"707 ","pages":"Pages 152-161"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on a conjecture from distillability of quantum entanglement\",\"authors\":\"Weng Kun Sio,&nbsp;Che-Man Cheng\",\"doi\":\"10.1016/j.laa.2024.11.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A conjecture from the distillability of quantum entanglement is that when <em>A</em> and <em>B</em> are <span><math><mn>4</mn><mo>×</mo><mn>4</mn></math></span> trace zero complex matrices and <span><math><msup><mrow><mo>‖</mo><mi>A</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mo>‖</mo><mi>B</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mn>1</mn><mo>/</mo><mn>4</mn></math></span> (where <span><math><mo>‖</mo><mo>⋅</mo><mo>‖</mo></math></span> is the Frobenius norm), the sum of squares of the largest two singular values of <span><math><mi>A</mi><mo>⊗</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>⊗</mo><mi>B</mi></math></span> does not exceed 1/2. In this paper, the conjecture is proved when<ul><li><span>(i)</span><span><div><em>A</em> or <em>B</em> is unitarily similar to a direct sum of <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> trace zero matrices;</div></span></li><li><span>(ii)</span><span><div><em>A</em> and <em>B</em> are unitarily similar to matrices, when partitioned into <span><math><mn>2</mn><mo>×</mo><mn>2</mn></math></span> blocks, having zero diagonal blocks.</div></span></li></ul></div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"707 \",\"pages\":\"Pages 152-161\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379524004336\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379524004336","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

量子纠缠的可提炼性的一个猜想是:当 A 和 B 是 4×4 痕量为零的复矩阵且‖A‖2+‖B‖2=1/4(其中‖⋅‖是弗罗贝尼斯规范)时,A⊗I4+I4⊗B 的最大两个奇异值的平方和不超过 1/2 。本文证明了以下猜想:(i) A 或 B 与 2×2 痕零矩阵的直接和具有单位相似性;(ii) A 和 B 被分割成 2×2 块时与矩阵具有单位相似性,且对角块为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on a conjecture from distillability of quantum entanglement
A conjecture from the distillability of quantum entanglement is that when A and B are 4×4 trace zero complex matrices and A2+B2=1/4 (where is the Frobenius norm), the sum of squares of the largest two singular values of AI4+I4B does not exceed 1/2. In this paper, the conjecture is proved when
  • (i)
    A or B is unitarily similar to a direct sum of 2×2 trace zero matrices;
  • (ii)
    A and B are unitarily similar to matrices, when partitioned into 2×2 blocks, having zero diagonal blocks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信