Daqing Dai, Xiqiong Wang, Kexin Wu, Fangren Lan, Jiaming Jin, Wenxin Zhang, Chaoliang Wen, Junying Li, Ning Yang, Congjiao Sun
{"title":"鸡贮藏和孵化期间受精蛋清的蛋白质组和 N-糖基化分析","authors":"Daqing Dai, Xiqiong Wang, Kexin Wu, Fangren Lan, Jiaming Jin, Wenxin Zhang, Chaoliang Wen, Junying Li, Ning Yang, Congjiao Sun","doi":"10.1016/j.psj.2024.104526","DOIUrl":null,"url":null,"abstract":"<div><div>Proteins in egg whites play vital roles in embryonic development. Simultaneously, protein modification is affected by the surrounding environment, which ultimately affects the structure and function of proteins. Here, we measured the phenotypes of eggs at different time points during storage and incubation and used 4D label-free quantitative proteomics technology and liquid chromatography/tandem mass spectrometry (<strong>LC-MS/MS</strong>)-technique to identify the differential proteins and N-glycosylation sites in egg whites during storage and incubation. We found that the differential N-glycoproteins in the early stage of storage were mainly related to protein structure changes, antibacterial activity, and cell proliferation, and that there were more protease inhibitors in egg whites, which decreased in the later stage of storage. Finally, eleven possible protein markers and N-glycosylation sites were identified to significantly change during storage and may exert an effect on hatchability, including the proteins involved in antibacterial activity (OVOA-N855, CLU-N154, ogchi-N82, PIGR-N290, WFDC2-N120), protein structure (LOC776816), and cell proliferation (ASAH1-N173). This study provides substantial insights into the physical and molecular compositional changes in egg whites under different storage times and revealed their potential effect on chick embryo development.</div></div>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"104 1","pages":"Article 104526"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proteomic and N-glycosylation analysis of fertile egg white during storage and incubation in chickens\",\"authors\":\"Daqing Dai, Xiqiong Wang, Kexin Wu, Fangren Lan, Jiaming Jin, Wenxin Zhang, Chaoliang Wen, Junying Li, Ning Yang, Congjiao Sun\",\"doi\":\"10.1016/j.psj.2024.104526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Proteins in egg whites play vital roles in embryonic development. Simultaneously, protein modification is affected by the surrounding environment, which ultimately affects the structure and function of proteins. Here, we measured the phenotypes of eggs at different time points during storage and incubation and used 4D label-free quantitative proteomics technology and liquid chromatography/tandem mass spectrometry (<strong>LC-MS/MS</strong>)-technique to identify the differential proteins and N-glycosylation sites in egg whites during storage and incubation. We found that the differential N-glycoproteins in the early stage of storage were mainly related to protein structure changes, antibacterial activity, and cell proliferation, and that there were more protease inhibitors in egg whites, which decreased in the later stage of storage. Finally, eleven possible protein markers and N-glycosylation sites were identified to significantly change during storage and may exert an effect on hatchability, including the proteins involved in antibacterial activity (OVOA-N855, CLU-N154, ogchi-N82, PIGR-N290, WFDC2-N120), protein structure (LOC776816), and cell proliferation (ASAH1-N173). This study provides substantial insights into the physical and molecular compositional changes in egg whites under different storage times and revealed their potential effect on chick embryo development.</div></div>\",\"PeriodicalId\":20459,\"journal\":{\"name\":\"Poultry Science\",\"volume\":\"104 1\",\"pages\":\"Article 104526\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poultry Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032579124011040\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032579124011040","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Proteomic and N-glycosylation analysis of fertile egg white during storage and incubation in chickens
Proteins in egg whites play vital roles in embryonic development. Simultaneously, protein modification is affected by the surrounding environment, which ultimately affects the structure and function of proteins. Here, we measured the phenotypes of eggs at different time points during storage and incubation and used 4D label-free quantitative proteomics technology and liquid chromatography/tandem mass spectrometry (LC-MS/MS)-technique to identify the differential proteins and N-glycosylation sites in egg whites during storage and incubation. We found that the differential N-glycoproteins in the early stage of storage were mainly related to protein structure changes, antibacterial activity, and cell proliferation, and that there were more protease inhibitors in egg whites, which decreased in the later stage of storage. Finally, eleven possible protein markers and N-glycosylation sites were identified to significantly change during storage and may exert an effect on hatchability, including the proteins involved in antibacterial activity (OVOA-N855, CLU-N154, ogchi-N82, PIGR-N290, WFDC2-N120), protein structure (LOC776816), and cell proliferation (ASAH1-N173). This study provides substantial insights into the physical and molecular compositional changes in egg whites under different storage times and revealed their potential effect on chick embryo development.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.