氧化铪铁电薄膜位移损伤的深度学习势能模型

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hua Chen, Yanjun Zhang, Chao Zhou, Yichun Zhou
{"title":"氧化铪铁电薄膜位移损伤的深度学习势能模型","authors":"Hua Chen, Yanjun Zhang, Chao Zhou, Yichun Zhou","doi":"10.1038/s41524-024-01465-6","DOIUrl":null,"url":null,"abstract":"<p>A model for studying displacement damage in irradiated HfO<sub>2</sub> ferroelectric thin films was developed using deep learning and a repulsive table, combining the accuracy of density functional theory with the efficiency of molecular dynamics. This model accurately predicts the properties of various HfO<sub>2</sub> phases, such as PO (<i>Pca</i>2<sub>1</sub>), T (<i>P</i>4<sub>2</sub>/<i>nmc</i>), AO (<i>Pbca</i>), and M (<i>P</i>2<sub>1</sub>/<i>c</i>), and describes the atom collision-separation process during irradiation. The displacement threshold energies for the Hf atoms, three-coordinated O atoms, and four-coordinated O atoms are 57.72, 41.93, and 32.89 eV, respectively. The defect formation probabilities (<i>DFPs</i>) for the O primary knock-on atoms (PKAs) and Hf PKAs increase with energy, reaching 1. Below 80.27 eV, the O PKAs are more likely to form point defects than the Hf PKAs. Above this energy, the Hf PKAs have a higher <i>DFP</i> because the O PKAs form replacement loops more easily, inhibiting the generation of point defects. This study provides a comprehensive understanding of defect formation, which is crucial for increasing the reliability of HfO<sub>2</sub> ferroelectric devices under irradiation.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"7 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning potential model of displacement damage in hafnium oxide ferroelectric films\",\"authors\":\"Hua Chen, Yanjun Zhang, Chao Zhou, Yichun Zhou\",\"doi\":\"10.1038/s41524-024-01465-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A model for studying displacement damage in irradiated HfO<sub>2</sub> ferroelectric thin films was developed using deep learning and a repulsive table, combining the accuracy of density functional theory with the efficiency of molecular dynamics. This model accurately predicts the properties of various HfO<sub>2</sub> phases, such as PO (<i>Pca</i>2<sub>1</sub>), T (<i>P</i>4<sub>2</sub>/<i>nmc</i>), AO (<i>Pbca</i>), and M (<i>P</i>2<sub>1</sub>/<i>c</i>), and describes the atom collision-separation process during irradiation. The displacement threshold energies for the Hf atoms, three-coordinated O atoms, and four-coordinated O atoms are 57.72, 41.93, and 32.89 eV, respectively. The defect formation probabilities (<i>DFPs</i>) for the O primary knock-on atoms (PKAs) and Hf PKAs increase with energy, reaching 1. Below 80.27 eV, the O PKAs are more likely to form point defects than the Hf PKAs. Above this energy, the Hf PKAs have a higher <i>DFP</i> because the O PKAs form replacement loops more easily, inhibiting the generation of point defects. This study provides a comprehensive understanding of defect formation, which is crucial for increasing the reliability of HfO<sub>2</sub> ferroelectric devices under irradiation.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01465-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01465-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用深度学习和斥力表,结合密度泛函理论的精确性和分子动力学的高效性,建立了研究辐照 HfO2 铁电薄膜位移损伤的模型。该模型准确预测了各种 HfO2 相的性质,如 PO (Pca21)、T (P42/nmc)、AO (Pbca) 和 M (P21/c),并描述了辐照过程中原子碰撞分离的过程。Hf 原子、三配位 O 原子和四配位 O 原子的位移阈值能量分别为 57.72、41.93 和 32.89 eV。O 原子和 Hf 原子的缺陷形成概率(DFPs)随着能量的增加而增加,达到 1。在 80.27 eV 以下,O PKAs 比 Hf PKAs 更有可能形成点缺陷。在此能量之上,由于 O 型 PKAs 更容易形成置换环,从而抑制了点缺陷的产生,因此 Hf PKAs 的 DFP 更高。这项研究提供了对缺陷形成的全面了解,这对提高辐照下 HfO2 铁电器件的可靠性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Deep learning potential model of displacement damage in hafnium oxide ferroelectric films

Deep learning potential model of displacement damage in hafnium oxide ferroelectric films

A model for studying displacement damage in irradiated HfO2 ferroelectric thin films was developed using deep learning and a repulsive table, combining the accuracy of density functional theory with the efficiency of molecular dynamics. This model accurately predicts the properties of various HfO2 phases, such as PO (Pca21), T (P42/nmc), AO (Pbca), and M (P21/c), and describes the atom collision-separation process during irradiation. The displacement threshold energies for the Hf atoms, three-coordinated O atoms, and four-coordinated O atoms are 57.72, 41.93, and 32.89 eV, respectively. The defect formation probabilities (DFPs) for the O primary knock-on atoms (PKAs) and Hf PKAs increase with energy, reaching 1. Below 80.27 eV, the O PKAs are more likely to form point defects than the Hf PKAs. Above this energy, the Hf PKAs have a higher DFP because the O PKAs form replacement loops more easily, inhibiting the generation of point defects. This study provides a comprehensive understanding of defect formation, which is crucial for increasing the reliability of HfO2 ferroelectric devices under irradiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信