{"title":"水稻的氨基酸代谢转变:对高浓度二氧化碳、氰化物和氮源的响应","authors":"Cheng-Zhi Li, Abid Ullah, Yi Kang, Xiao-Zhang Yu","doi":"10.1186/s40538-024-00701-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Amino acids (AAs) play multiple roles in plant development, and their reorientation is crucial strategy for plants in metabolic adaptation to various abiotic stresses. The incorporation of exogenous CN<sup>−</sup> into the N fertilization in plants is evident, wherein elevated CO<sub>2</sub> increases utilization and assimilation of biodegradable N-containing pollutants, consequently reduce phytotoxicity. In this study, a hydroponic system was employed to investigate the effects of different nitrogen (N) forms (nitrate: NO<sub>3</sub><sup>−</sup> and ammonium: NH<sub>4</sub><sup>+</sup>), CO<sub>2</sub> concentrations (ambient at 350 ppm and elevated at 700 ppm), and exogenous cyanide (KCN at 3.0 mg CN/L) on rice plants using metabonomics analysis.</p><h3>Results</h3><p>Elevated [CO<sub>2</sub>] (700 ppm) significantly enhanced the growth rate of rice seedlings, particularly under NH<sub>4</sub><sup>+</sup> nutrition combined with CN<sup>−</sup> treatment, compared to ambient [CO<sub>2</sub>] (350 ppm). Under elevated [CO<sub>2</sub>] both NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>-fed plants exhibited significantly higher CN<sup>−</sup> uptake and assimilation rates, with NH<sub>4</sub><sup>+</sup>-fed plants showing a greater response. Metabolomic analysis revealed distinct alteration in AA profiles, where elevated [CO<sub>2</sub>] and exogenous CN<sup>−</sup> significantly influenced the proportions of the glutamate (Glu) pathway and aspartate (Asp) pathway under both N treatments. Notably, NH<sub>4</sub><sup>+</sup>-fed plants under CN<sup>−</sup> stress demonstrated a 5.75-fold increase in total AA content in shoots under elevated [CO<sub>2</sub>], while NO<sub>3</sub><sup>−</sup>-fed plants CN<sup>−</sup> stress showed a smaller increase of 1.81-fold. These results suggest that elevated [CO<sub>2</sub>] coupled with NH<sup>4+</sup> nutrition optimizes rice metabolic adaptation to CN<sup>−</sup> stress.</p><h3>Conclusions</h3><p>This study highlights the strategic alteration of AA profiles as a key adaptive mechanism in rice plants facing elevated [CO<sub>2</sub>] and exogenous CN<sup>−</sup> stress. These shifts in AA pathways facilitate enhanced nutrient assimilation and stress resilience, offering insights into plant metabolic adaptation under changing environmental conditions.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00701-x","citationCount":"0","resultStr":"{\"title\":\"Amino acid metabolic shifts in rice: responses to elevated CO2, cyanide, and nitrogen sources\",\"authors\":\"Cheng-Zhi Li, Abid Ullah, Yi Kang, Xiao-Zhang Yu\",\"doi\":\"10.1186/s40538-024-00701-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Amino acids (AAs) play multiple roles in plant development, and their reorientation is crucial strategy for plants in metabolic adaptation to various abiotic stresses. The incorporation of exogenous CN<sup>−</sup> into the N fertilization in plants is evident, wherein elevated CO<sub>2</sub> increases utilization and assimilation of biodegradable N-containing pollutants, consequently reduce phytotoxicity. In this study, a hydroponic system was employed to investigate the effects of different nitrogen (N) forms (nitrate: NO<sub>3</sub><sup>−</sup> and ammonium: NH<sub>4</sub><sup>+</sup>), CO<sub>2</sub> concentrations (ambient at 350 ppm and elevated at 700 ppm), and exogenous cyanide (KCN at 3.0 mg CN/L) on rice plants using metabonomics analysis.</p><h3>Results</h3><p>Elevated [CO<sub>2</sub>] (700 ppm) significantly enhanced the growth rate of rice seedlings, particularly under NH<sub>4</sub><sup>+</sup> nutrition combined with CN<sup>−</sup> treatment, compared to ambient [CO<sub>2</sub>] (350 ppm). Under elevated [CO<sub>2</sub>] both NO<sub>3</sub><sup>−</sup> and NH<sub>4</sub><sup>+</sup>-fed plants exhibited significantly higher CN<sup>−</sup> uptake and assimilation rates, with NH<sub>4</sub><sup>+</sup>-fed plants showing a greater response. Metabolomic analysis revealed distinct alteration in AA profiles, where elevated [CO<sub>2</sub>] and exogenous CN<sup>−</sup> significantly influenced the proportions of the glutamate (Glu) pathway and aspartate (Asp) pathway under both N treatments. Notably, NH<sub>4</sub><sup>+</sup>-fed plants under CN<sup>−</sup> stress demonstrated a 5.75-fold increase in total AA content in shoots under elevated [CO<sub>2</sub>], while NO<sub>3</sub><sup>−</sup>-fed plants CN<sup>−</sup> stress showed a smaller increase of 1.81-fold. These results suggest that elevated [CO<sub>2</sub>] coupled with NH<sup>4+</sup> nutrition optimizes rice metabolic adaptation to CN<sup>−</sup> stress.</p><h3>Conclusions</h3><p>This study highlights the strategic alteration of AA profiles as a key adaptive mechanism in rice plants facing elevated [CO<sub>2</sub>] and exogenous CN<sup>−</sup> stress. These shifts in AA pathways facilitate enhanced nutrient assimilation and stress resilience, offering insights into plant metabolic adaptation under changing environmental conditions.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":512,\"journal\":{\"name\":\"Chemical and Biological Technologies in Agriculture\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00701-x\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biological Technologies in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40538-024-00701-x\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00701-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Amino acid metabolic shifts in rice: responses to elevated CO2, cyanide, and nitrogen sources
Background
Amino acids (AAs) play multiple roles in plant development, and their reorientation is crucial strategy for plants in metabolic adaptation to various abiotic stresses. The incorporation of exogenous CN− into the N fertilization in plants is evident, wherein elevated CO2 increases utilization and assimilation of biodegradable N-containing pollutants, consequently reduce phytotoxicity. In this study, a hydroponic system was employed to investigate the effects of different nitrogen (N) forms (nitrate: NO3− and ammonium: NH4+), CO2 concentrations (ambient at 350 ppm and elevated at 700 ppm), and exogenous cyanide (KCN at 3.0 mg CN/L) on rice plants using metabonomics analysis.
Results
Elevated [CO2] (700 ppm) significantly enhanced the growth rate of rice seedlings, particularly under NH4+ nutrition combined with CN− treatment, compared to ambient [CO2] (350 ppm). Under elevated [CO2] both NO3− and NH4+-fed plants exhibited significantly higher CN− uptake and assimilation rates, with NH4+-fed plants showing a greater response. Metabolomic analysis revealed distinct alteration in AA profiles, where elevated [CO2] and exogenous CN− significantly influenced the proportions of the glutamate (Glu) pathway and aspartate (Asp) pathway under both N treatments. Notably, NH4+-fed plants under CN− stress demonstrated a 5.75-fold increase in total AA content in shoots under elevated [CO2], while NO3−-fed plants CN− stress showed a smaller increase of 1.81-fold. These results suggest that elevated [CO2] coupled with NH4+ nutrition optimizes rice metabolic adaptation to CN− stress.
Conclusions
This study highlights the strategic alteration of AA profiles as a key adaptive mechanism in rice plants facing elevated [CO2] and exogenous CN− stress. These shifts in AA pathways facilitate enhanced nutrient assimilation and stress resilience, offering insights into plant metabolic adaptation under changing environmental conditions.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.